Science Roundtable

Rights-of-Way as Habitat Working Group May 3, 2017

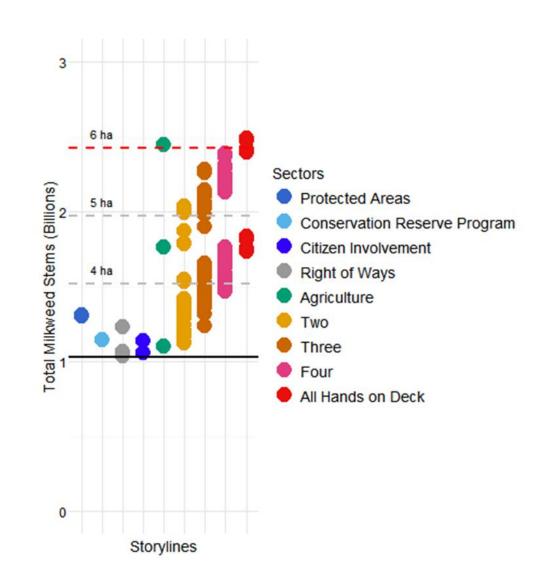
Monarch Conservation Science Partnership integrated monitoring strategy

Wendy Caldwell Monarch Joint Venture

MCSP Integrated Monitoring Strategy

Rationale, Design and Next Steps

The Monarch Conservation Science Partnership &

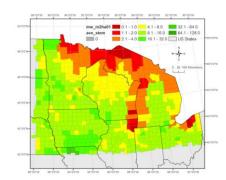


Monitoring Monarch Butterflies and Their Habitat Across North America Wendy Caldwell, MJV Coordinator

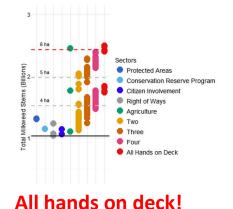


Storylines Analysis

- "All-hands-on-deck"
- Thogmartin et al.


1. Monarch Conservation Target 2. Milkweed Conservation Target

Winter Season 6 hectares of overwintering monarchs


Add ~1.4 billion stems of milkweed

5. USGS Conservation Tools

Practitioner recommendations

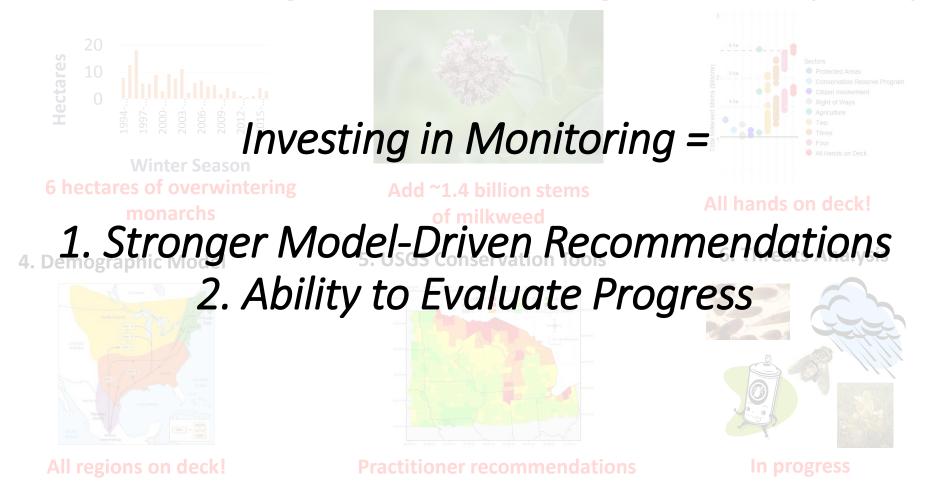
3. Milkweed Storylines Analysis

6. Threats Analysis

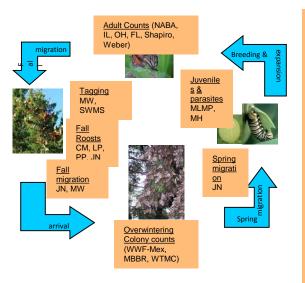
In progress

4. Demographic Model

All regions on deck!


MCSP Integrated Monitoring Strategy

Fort Collins, 2016


- 1. Engage **broad audiences** (citizen scientists, federal and state agencies, NGOs)
- 2. To monitor monarchs and their habitat with **protocols**
- 3. At spatially balanced sites

1. Monarch Conservation Target 2. Milkweed Conservation Target 3. Milkweed Storylines Analysis

Pros and cons of existing monitoring programs

++

MONITORING PROGRAMS

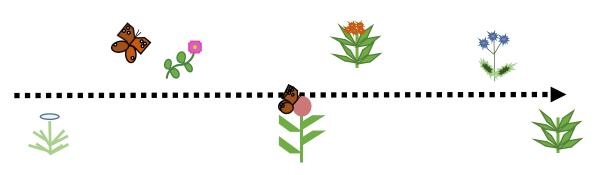
NABA: North American Butterfly Association count program
IL: Illinois monitoring

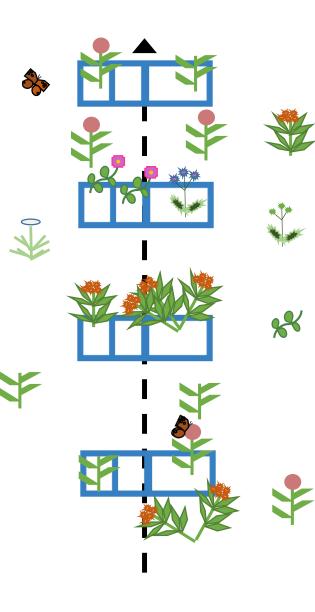
- Network
 OH: Ohio monitoring network
- Shapiro: No. CA monitoring program
- Weber: MN monitoring site
 MLMP: Monarch Larva Monitoring Project
- MH: Monarch Health
 JN: Journey North
- WWF-Mex: World Wildlife
 Fund and MBBR in Mexico
- WTMC: Thanksgiving Monarch Counts
- MW: MonarchWatch
 SWMS: Southwest Monarch Study
- CM: Cape May roost monitoring
- LP: Long Point roost monitoring
- PP: Peninsula Point roost monitoring

- Non-random sampling
- Gaps: temporal, geographic, attribute
- Challenging to combine data

Pros and cons of existing monitoring programs

MONITORING PROGRAMS Adult Counts (NABA, NABA: North American IL, OH, FL, Shapiro, Butterfly Association count Weber) migration program IL: Illinois monitoring network OH: Ohio monitoring <u>Juvenile</u> network <u>s &</u> Tagging Shapiro: No. CA monitoring MW. parasites program MLMP. SWMS Weber: MN monitoring site MH MLMP: Monarch Larva Fall Monitoring Project Roosts MH: Monarch Health CM. LP. JN: Journey North PP. JN Spring WWF-Mex: World Wildlife Fall migrati Fund and MBBR in Mexico migration <u>on</u> WTMC: Thanksgiving JN JN, MW Monarch Counts MW: MonarchWatch SWMS: Southwest Spring Monarch Study arrival CM: Cape May roost Overwintering Colony counts monitoring (WWF-Mex, LP: Long Point roost MBBR. WTMC) monitoring PP: Peninsula Point roost monitoring


- Non-random sampling
- Gaps: temporal, geographic, attribute
- Challenging to combine data


MCSP Integrated Monitoring Strategy:

Engage broad audiences in spatially balanced data collection

Activities/Protocols

- 1: Site selection, establishment and description
- 2: Counting adult butterflies (modified Pollard Walk)
- 3: Counting plants and immature monarchs (MLMP)
- **4:** Monarch survival and parasitism (*MLMP, Project Monarch Health, Monarch Watch*)
- 5: Counting red imported fire ants
- 6: Data management

Monitoring Strata

Protected grassland

Agricultural lands

Unprotected grassland

ROW habitats

CRP

Urban/suburban spaces

Monitoring Strategy: 2017 Early Implementation

Biotechs on public and private strata

- Region 2
- Region 3
- Citizen scientists on public strata (NRPC funding)
 - Citizen science workshops (TBD)

Monitoring Strategy: Next steps

Broad-Scale Implementation

Monitoring Strata

Protected grassland

Agricultural lands

Unprotected grassland

CRP

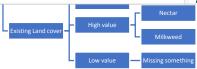
Urban/suburban spaces

National Cooperative Highway Research Program

Evaluating the Suitability of Roadway Corridors for Use by Monarch Butterflies

NCHRP Goals

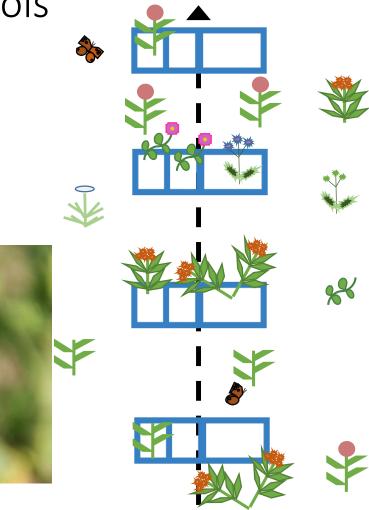
Develop and validate a methodology for transportation practitioners to determine:


- If roadway corridors are suitable for monarch butterfly habitat/production, and
- How to maximize the beneficial aspects and minimize the detrimental impacts

Dianne Kahal-Berman

Product	Deliverables	Outcomes
A. Priority roadside filtration computer model	 Model to identify sites with greatest potential to contribute monarch habitat across geographic scales 	Remote identification of priority sites for monarch habitat.
B. Monitoring protocols and data to evaluate roadside habitat quality for monarchs	 Protocols to assess habitat quality Model parameters, proxies for habitat quality, uncertainty and sensitivity analyses 	Practitioners assess habitat quality easily and cheaply, and models are parameterized and validated.
C. Computer model to score habitat potential for monarch production	 Calculator for roadside habitat quality based on landscape context and current attributes 	Practitioners evaluate effects of management actions on monarch population.
D. Context sensitive management recommendations and cost estimates	 Structured decision framework prototype detailing regionally appropriate BMPs, costs and benefits, feasibility of creating software-based platform 	Practitioners select context- specific management practices.

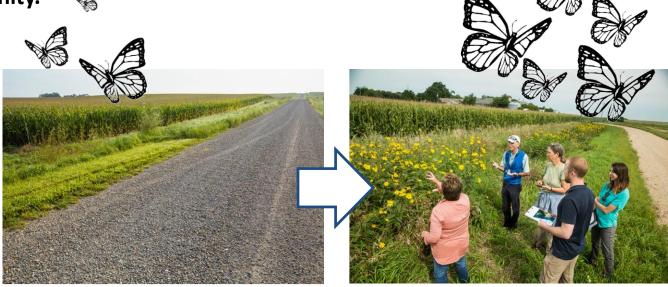
Management focus - Monagement accurate												owing															
	A	В	C		D	E	F	G	Н	Ι	J	Κ	L	М	N	0	Ρ	Q	R	S	Т	U	V	W	х	Y	-
1						marg crop adoption	Corn and Soy	CRP non-wet	CRP- wet	Exurban	Fallow	Marginal Crop	Other Crops	Pasture/Hay	Powerline ROW	Protected Grassland	Rail ROW	Roadside (Freeway/Hwy)	Roadside (Secondary Road)	Roadside (Small Road)	Unsuitable	Urban-High Intensity	Urban-Low Intensity	Urban- Medium Intensity	Urban open core	Wetland	Protected
2	state	Acres Changed	4.00E+09		8.0	workshop values					0.02								0.06	0.05						0.08	
3	Illinois	856,291				Illinois	0.02	0.15	0.15	0.04	0.02	0.02	0.01	0.05	0.18	0.5	0.05	0.08	0.06	0.05	0	0.01	0.01	0.01	0.04	0.08	
4	Indiana	504,308	3.50E+09		7.0	Indiana	0.02	0.15	0.15	0.04	0.02	0.02	0.01	0.05	0.18	0.5	0.05	0.08	0.06	0.05	0	0.01	0.01	0.01	0.04	0.08	
5	Iowa	1,096,830				Iowa	0.02	0.15	0.15	0.04	0.02	0.02	0.01	0.05	0.18	0.5	0.05	0.08	0.06	0.05	0	0.01	0.01	0.01	0.04	0.08	\square
6	Kansas	397,893	3.00E+09		6.0 (eq)	Kansas	0.02	0.15	0.15	0.04	0.02	0.02	0.01	0.05	0.18	0.5	0.05	0.08	0.06	0.05	0	0.01	0.01	0.01	0.04	0.08	
7	Kentucky	203,742	e		0 ()	Kentucky	0.02	0.15	0.15	0.04	0.02	0.02	0.01	0.05	0.18	0.5	0.05	0.08	0.06	0.05	0	0.01	0.01	0.01	0.04	0.08	
8	Maryland	8,444	2.50E+09		5.0 8	Maryland	0.02	0.15	0.15	0.04	0.02	0.02	0.01	0.05	0.18	0.5	0.05	0.08	0.06	0.05	0	0.01	0.01	0.01	0.04	0.08	
9	Michigan	231,478	us ii		Σ	Michigan	0.02	0.15	0.15	0.04	0.02	0.02	0.01	0.05	0.18	0.5	0.05	0.08	0.06	0.05	0	0.01	0.01	0.01	0.04	0.08	
10	Minnesota	1,050,625	2.00E+09		4.0 tg	Minnesota	0.02	0.15	0.15	0.04	0.02	0.02	0.01	0.05	0.18	0.5	0.05	0.08	0.06	0.05	0	0.01	0.01	0.01	0.04	0.08	+
11	Missouri	773,589	pa		abit	Missouri	0.02	0.15	0.15	0.04	0.02	0.02	0.01	0.05	0.18	0.5	0.05	0.08	0.06	0.05	0	0.01	0.01	0.01	0.04	0.08	
12	Nebraska	464,673	₹ 1.50E+09		3.0 4	Nebraska	0.02	0.15	0.15	0.04	0.02	0.02	0.01	0.05	0.18	0.5	0.05	0.08	0.06	0.05	0	0.01	0.01	0.01	0.04	0.08	=
13	New York	24,104	W		naro	New York	0.02	0.15	0.15	0.04	0.02	0.02	0.01	0.05	0.18	0.5	0.05	0.08	0.06	0.05	0	0.01	0.01	0.01	0.04	0.08	
14	North Dakota	307,806	1.00E+09		2.0 ₽	North Dakota	0.02	0.15	0.15	0.04	0.02	0.02	0.01	0.05	0.18	0.5	0.05	0.08	0.06	0.05	0	0.01	0.01	0.01	0.04	0.08	
15	Ohio	570,299				Ohio	0.02	0.15	0.15	0.04	0.02	0.02	0.01	0.05	0.18	0.5	0.05	0.08	0.06	0.05	0	0.01	0.01	0.01	0.04	0.08	
16	Pennsylvania	193,352	5.00E+08		1.0	Pennsylvania	0.02	0.15	0.15	0.04	0.02	0.02	0.01	0.05	0.18	0.5	0.05	0.08	0.06	0.05	0	0.01	0.01	0.01	0.04	0.08	
17	South Dakota	480,528				South Dakota	0.02	0.15	0.15	0.04	0.02	0.02	0.01	0.05	0.18	0.5	0.05	0.08	0.06	0.05	0	0.01	0.01	0.01	0.04	0.08	
8	West Virginia	75,019	0.00E+00		0.0	West Virginia	0.02	0.15	0.15	0.04	0.02	0.02	0.01	0.05	0.18	0.5	0.05	0.08	0.06	0.05	0	0.01	0.01	0.01	0.04	0.08	
19	Wisconsin	356261		Total		Wisconsin	0.02	0.15	0.15	0.04	0.02	0.02	0.01	0.05	0.18	0.5	0.05	0.08	0.06	0.05	0	0.01	0.01	0.01	0.04	0.08	
20		Current	Amended	Total		The values above re	preser	t the p	propor	tion of	land in	n each	sector	that	vould	adopt	the a	mende	ed ster	n dens	ities	. The	top lin	e, "wo	rkshor	,	-
21	Stems	1,091,301,667	351,468,682	1,44	2,770,349	values", are the ado																		1	10		
22	Monarchs (ha)	2.57	0.83		3		38100000									20-02/22			2010/06/06			0001000					



Management objectives

гI

Product B: Monitoring Protocols


- Integrated Monitoring Strategy (MCSP)
- Basic assessment protocols for practitioners

Product C: Computer Scoring Model HABITAT QUANTIFICATION TOOL (HQT)

An HQT is a standardized approach to assessing habitat quality for a specific species or community.

PURPOSE OF AN HQT

• Estimate the contribution of a given project towards regional conservation goals.

INDICATOR FRAMEWORK

MONARCH HQT COMPONENTS

Calculator

Landowner or N	unager				Il Service Provider		
Name				Name			
Mailing				Mailing			
Address				Address			
Telephone			T	elephone			
Email				Email			
Project Name							
Site Capacity							
Breeding Habita		Foragi	ng Habitat	45%	Site Capacity	38%	
Quality			Quality		Score		
Threats		_			Threats		
Acreage of			Proportion	5%	Score		
Habitat-At-Russ	Habitat-At-Risk				score		
Conservation Priority							
conservation Priority					Conservation		
					Priority Score		
					Priority Joone		
HQT Assessment Results							
Total Acres		Total	Functional		Total Monarch		
Assessed	66.49		Acres	21.49	Yield		
votes:							
	For	Administra	ative Use O				
Unique Project ID				Date	Received		
Administrator's Notes:							

Available at edf.org/monarch

Product D: Context Sensitive Management Recommendations

- Workshops and webinars
- Requires input from practitioners

Questions

Wendy Caldwell MJV Coordinator monarchs@monarchjointventure.org

EPRI Pollinator Habitat Field Studies

John Goodrich-Mahoney Electric Power Research Institute

EPRI's Pollinator Research Program: Protecting and Promoting Pollinators on Electric Utility Lands

John W. Goodrich-Mahoney Principal Technical Leader

Rights-of-Way as Habitat Science Round Table May 3, 2017

What is EPRI?

- EPRI is a 501(c3) non-profit charitable organization, which conducts research for the public good
 - EPRI was formed in 1973 and is headquartered in Palo Alto, CA
 - EPRI is funded by the electric utility industry world-wide
 - EPRI also responds to soliciations from DOE and the California Energy Commission
 - EPRI conducts a broad public-private collaborative research program

Protecting and Promoting Pollinators on Electric Utility Lands

- Why is EPRI Involved in Pollinator Research?
 - Global decline in both native and management pollinator populations
 - Internal and external stakeholders asking electric utilities about pollinators on their lands
 - To bring good science and a coordinated response to a critical environmental issue
 - To address electric utility sustainability goals
 - To fulfill EPRI's charge to conduct research for the public good

Protecting and Promoting Pollinators on Electric Utility Lands

When Did EPRI Start a Formal Pollinator Research Program?

- Initial discussions with members in 2015 concerning a research program, with the research program starting in 2016
 - Research prior to 2016: 7 technical reports and 1 journal paper
- What Is the Content of the Current Research Program?
 - Member survey
 - Two literature reviews
 - Pollinators: Distribution and transmission rightsof-way
 - Herbicides and Pollinators (just started)
 - Multi-year field research projects (3 to 4 years)
 - Observational and manipulative studies
 - Field study protocols to support studies at distant locations
 - Pollinator Initiative
 - Metrics for measuring pollinator wellbeing on electric utility lands

Protecting and Promoting Pollinators on Electric Utility Lands: Integrated Vegetation Management (IVM)

- EPRI brings over 20 years of IVM research to support its pollinator research program
- Blends ecosystem values with cost-effective vegetation management
- Active management seeks to develop and enhance persistent low-growing vegetation that inhibits the growth of tall trees
- EPRI's research focused developing information to assist utilities in implementing IVM on their transmission systems
 - IVM standards (10 principles and 42 criteria)
 - EPRI IVM assessments
 - ROW Stewardship Council Accreditation
 - IVM training manual
 - Manipulative studies, as part of the pollinator research program

Discussing Integrated Vegetation Management for Transmission Line Corridors

Multi-Year Field Studies Observational and Manipulative Studies

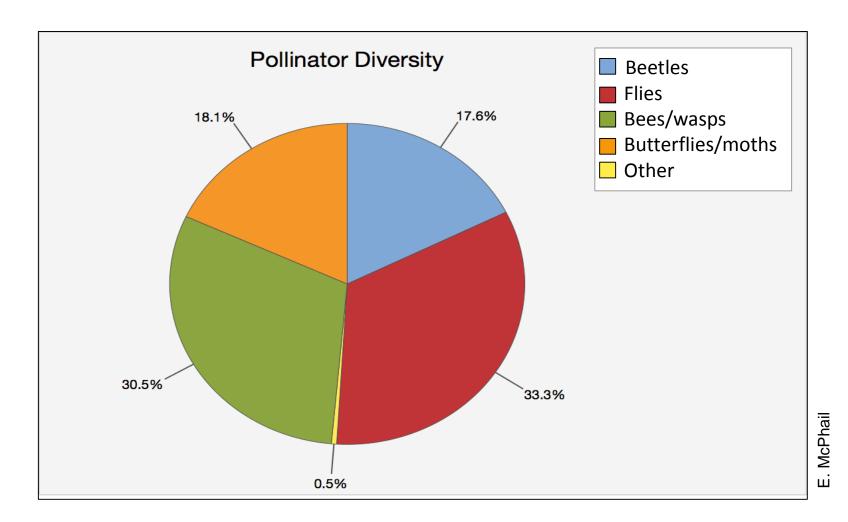
State University of New York College of Environmental Science and Forestry Syracuse, NY

Protecting and Promoting Pollinators on Electric Utility Lands: Field Studies

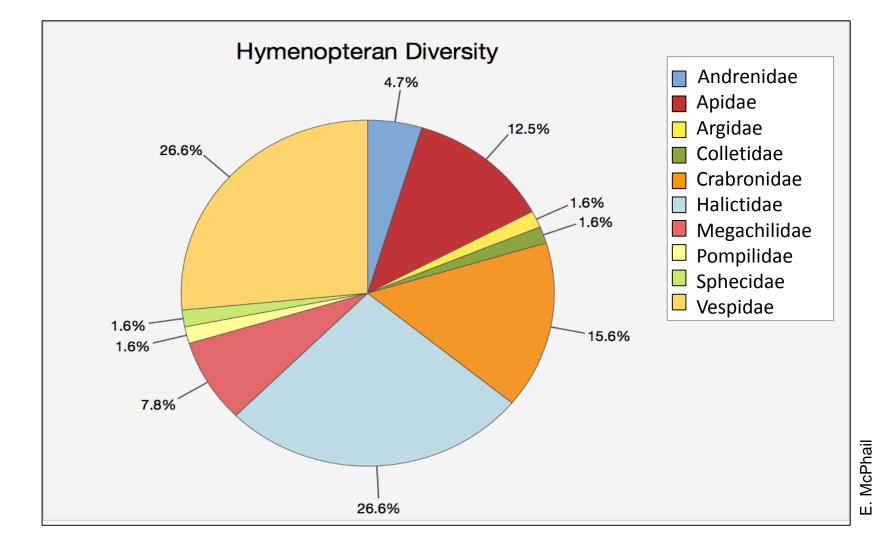
- Multi-year field research projects to address two basic questions
 - What is the baseline diversity of pollinators on transmission line corridors?
 - What can be done to manage for pollinator habitat in a cost effective manner?

Protecting and Promoting Pollinators on Electric Utility Lands: Field Studies (continued)

- Manipulative studies to begin in 2018
- Seeking additional field sites
- Developing a field study protocol to support these studies


Protecting and Promoting Pollinators on Electric Utility Lands: Initial Results - Observation Study 2016

- Pollinator assemblage patterns on transmission rights-of-way in the New York and the Ohio managed for the long-term with mechanical or chemical treatment schemes
 - Methods are producing discernible spatial and temporal patterns in flowering plants and pollinators
 - First study to document importance of flies and beetles as pollinators on transmission rights-of-way
 - Investigators collected over 3,200 specimens representing 201 species and 42 families



Pollinators from five orders were present on two study sites in the NE and Mid-west

The next largest group was bees/wasps (Hymenoptera).

Questions/Comments

Together...Shaping the Future of Electricity

Integrated Vegetation Management (IVM) on utility corridors

Gabe Karns The Ohio State University

Integrated Vegetation Mgt (IVM) on Pipeline Corridors

Gabriel Karns

ROWs Working Group :: Science Roundtable

Federal Aid Project funded by your purchase of hunting equipment

Overview

- Rights-of-way (ROWs)
- Pipeline ROWs in Eastern OH
- Challenges & Opportunities
- Research Objectives

Overhead vs. Underground Utilities

Overhead vs. Underground Utilities

- Shorter return interval
- •Woody veg OK
- •Germination rate/speed
- Forb/herbaceous potential
- Typically narrower
- Access critical
- •Sight lines required

ROWs Research

Relative paucity of pipeline research

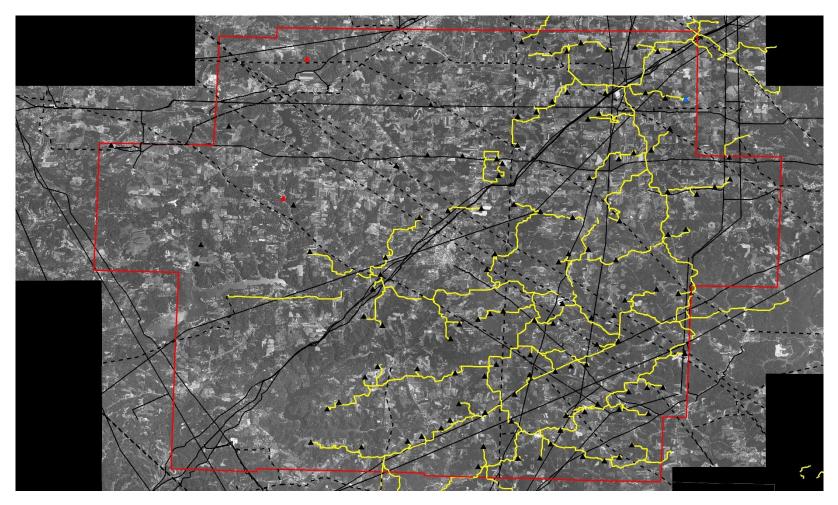
Basic Footprint

Forest birds & fragmentation

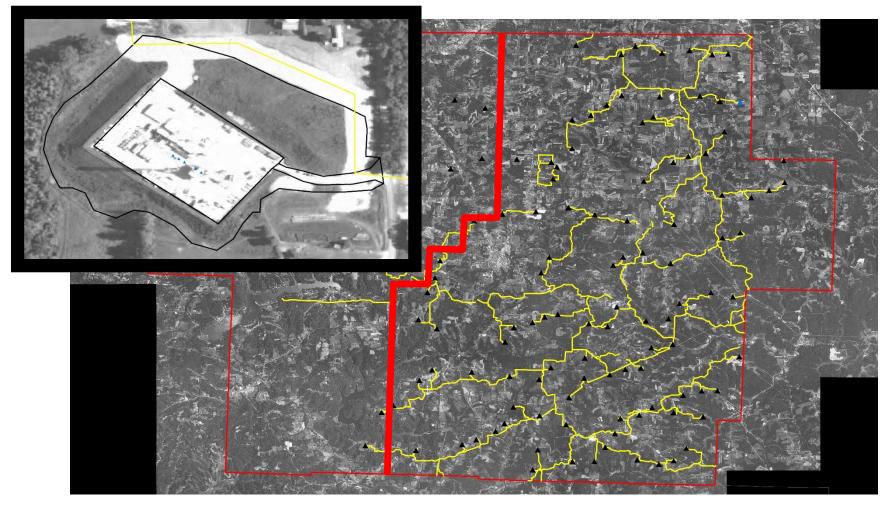
Noise pollution

ES birds Small mammals

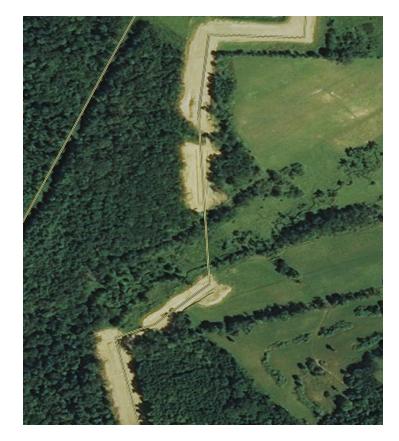
Herps


Toxicity & pollutants

Invertebrates


Energy Infrastructure in Eastern OH

Energy Infrastructure in Eastern OH

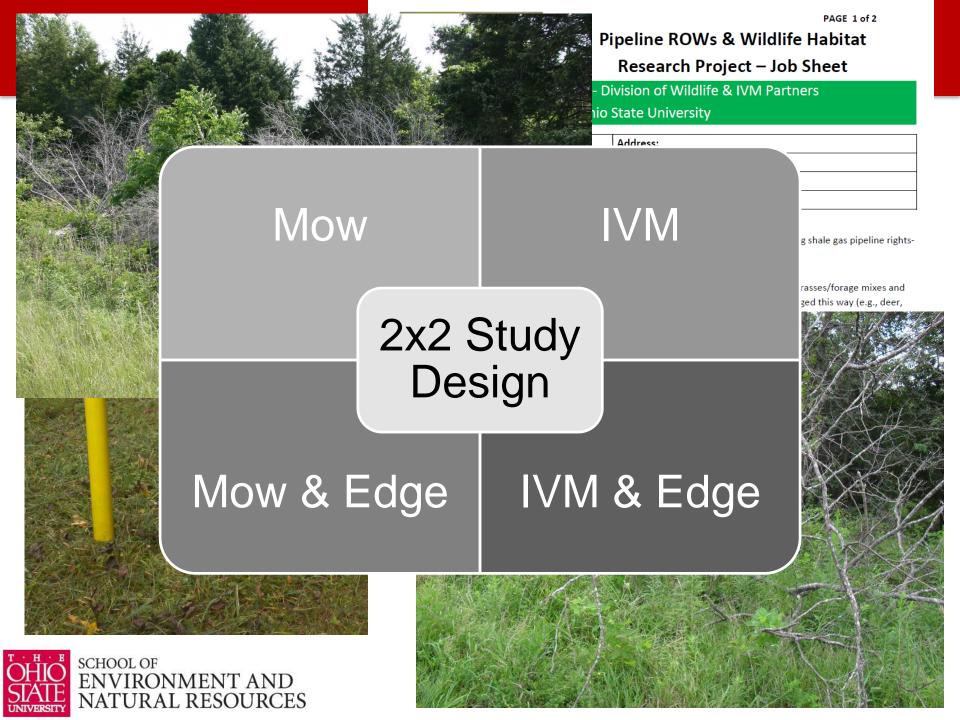


Energy Infrastructure in E. Carroll Cty

- 200 miles of pipeline ROWs
- 23.7 acres of ROW per well pad
- 2.3% direct footprint

1 in every 7 acres influenced!!!

ROWs Research



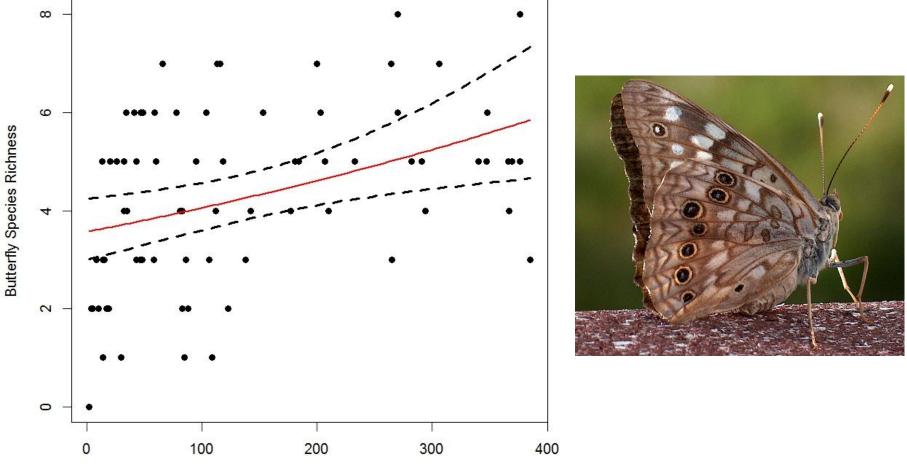
ROWs Research

- Butterfly species = 32
- Total butterflies observed = 1,142
- Herbaceous flowering species = 88
- Total flowering blooms counted = 10,385

• What factors influence butterfly abundance and diversity?

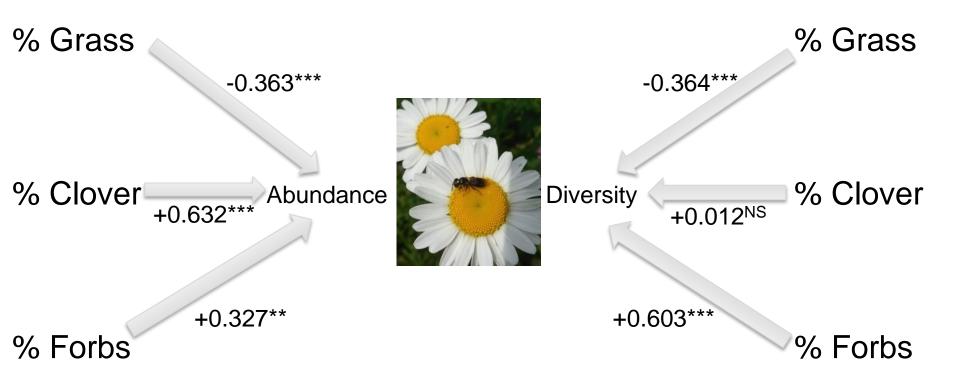
• Can managers encourage those factors to further butterfly conservation?

• If so, how?



- What factors influence butterfly abundance and diversity?
 - Wider ROWs w/ ↑ nectar resources from ↑ diversity of blooming plant species ~ ↑ butterfly abundance & diversity
 - Butterfly abundance & diversity \uparrow from May-August
 - Bloom diversity (*not abundance*) ↑ from May-August

Bloom Abundance



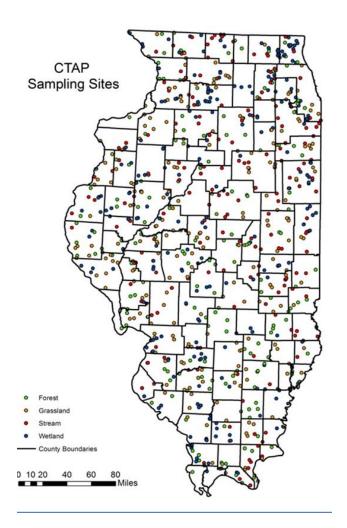
Bees-----Herps

Seed mix design / Perceptions of roadside IVM

Kristine Nemec

University of Northern Iowa Tallgrass Prairie Center

TxDOT native seed collection study


Dennis Markwardt Texas DOT

Milkweed occurrence on multiple landscapes

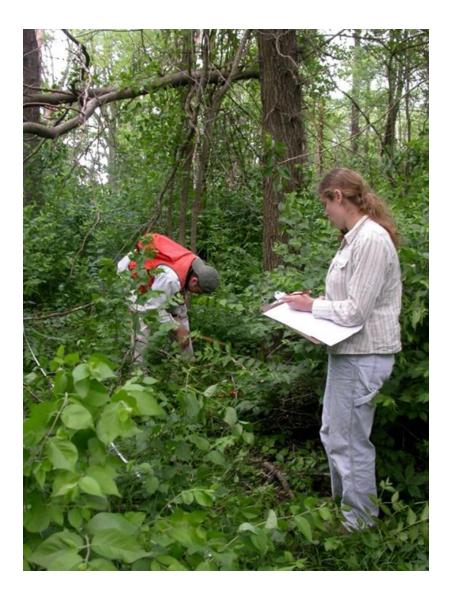
David Zaya & Bill Handel Illinois Natural History Survey

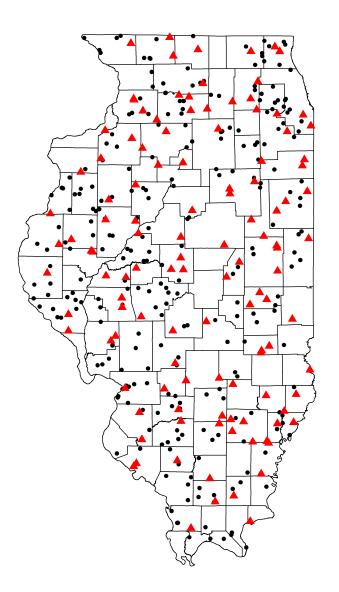
Long-term Trends in Midwestern Milkweeds and their Relevance for Monarchs

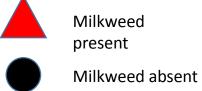
David N. Zaya William Handel Illinois Natural History Survey

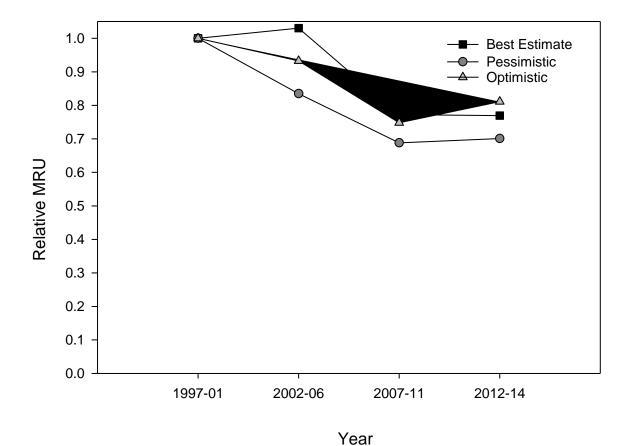
Critical Trends Assessment Program (CTAP)

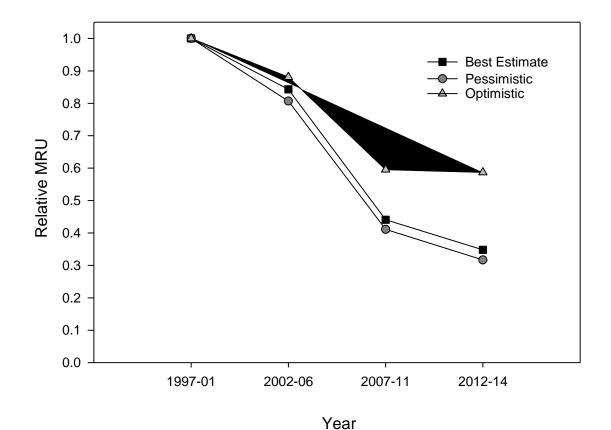
- 1997-present
- Forest-> Wetland-> Grassland
- Random site selection
- Permanent plots revisited 5years
- Consistent sampling methodology
- >80% sites private





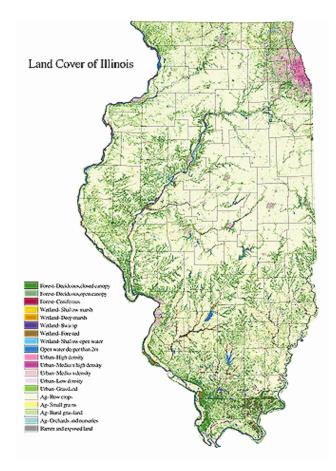






Monarch Resource Units Natural Areas

Zaya et al. In Review

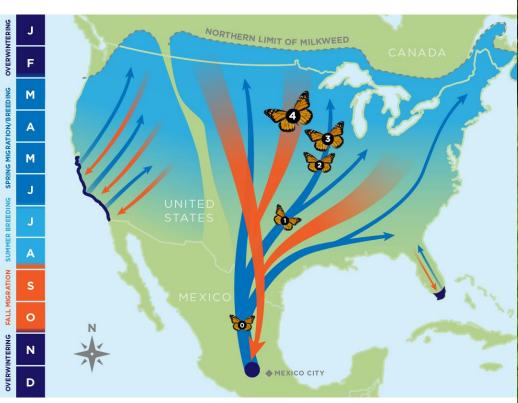

Monarch Resource Units Crop Fields + Natural Areas

Zaya et al. In Review

Gaps in Knowledge

- Heterogeneous distribution of habitat
- Right-of-way influence may change across landscape

Gaps in Knowledge


- Variation through time
 - Intra- and Inter-annual
 - Cycles in plants, butterflies
 - Management
 - e.g. drought years

Gaps in Knowledge

- Variation through time
 - Intra- and Inter-annual
 - Cycles in plants, butterflies
 - Management
 - e.g. drought years

NiSource soil microbiology study

Stan Vera-Art Grow With Trees

Economic value of biodiversity

Amy Ando University of Illinois

SCIENTIFIC METHOD

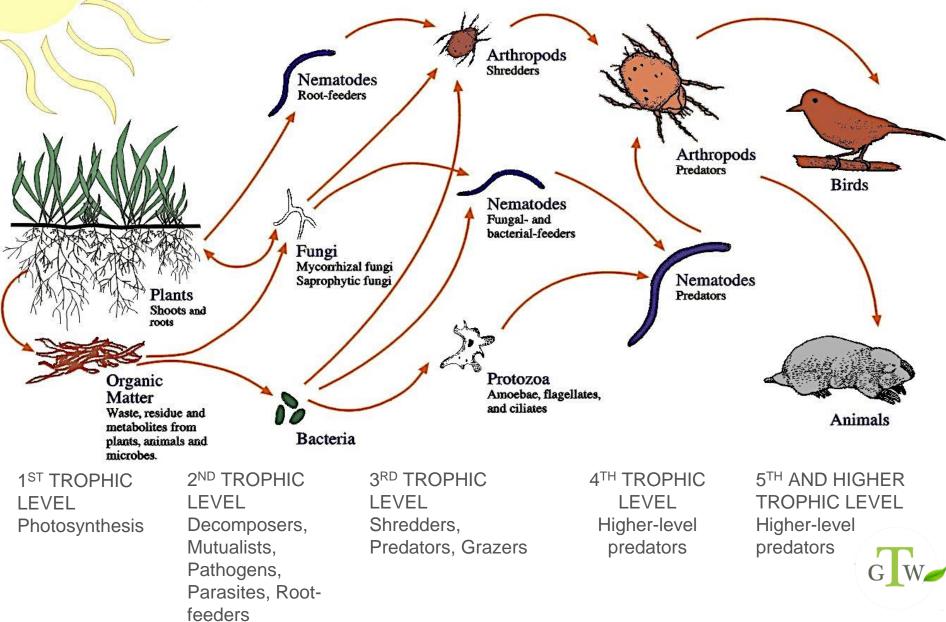
The scientific method seeks to explain the events of nature in a reproducible way.

- Make an Observation.
- Form a Question.
- Form a Hypothesis. Conduct an Experiment. ...
- Analyze the Data and Draw a Conclusion.

... A hypothesis is an **educated** guess about how things work. You conduct a fair test by making sure that you **change only one factor** at a time while keeping all other conditions the same.

SOIL

A single teaspoon (1 gram) of rich soil can hold up to:


- One billion bacteria
- Several yards of fungal filaments
- Several thousand protozoa
- Scores of nematodes

An educated guess ... making sure that you change only one factor at a time ...

SOIL FOODWEB

ONRCS

400X TM

© 2017 HER All Right Reserved

© 2017 HER All Right Reserved

Soaking seeds
 overnight with
 mychorrizae

Per 1/2 acre Recipe

Test ROW Swath 1800 Gallon Tank	1800 Gallons Per 1/2 ACRE TANK	I Utal Materials
Complete Fertilizer (Per Bag / 50#)	9	90
HuMagic (Per Bag / 40#)	6	60
Mychorrizae (Per Pound)	5	50
Wood Fiber Mulch (Per Bag / 50#)	9	90
Seed Mix (Per Pound)	30	300

- Cleaning tank
 with baking soda
- Filling with pond water for hydro-slurry

 Adding all ingredients according to recipe

Week 1

Week 6

5 months later

Economic Value of Biodiversity and Grasslands

Amy W. Ando Dept. of Agricultural and Consumer Economics University of Illinois Urbana-Champaign

Types of research

- Optimal conservation site choice planning:
 - Get the most benefits from your budget
 - Pick a portfolio of lands robust to climate change
- Non-market valuation: what are we willing to pay (WTP) for environmental goods?
 - Reduced flooding
 - Aquatic habitat quality
 - Biodiversity
 - Grasslands

What are people WTP for grasslands?

- Method:
 - Choice experiment survey (hypothetical)
 - Responses from ~300 Illinois households
- Results:
 - People WTP \$75-\$100/yr for a 100-acre grassland
 - Value increased by proximity, familiarity, wildflowers, biodiversity, large bird populations, endangered species, less burning
 (Dissanayake and Ando 2014)

What is value of extra carbon storage from biodiverse grasslands?

- Method:
 - Data from experiments shows how much carbon stored in grasslands as function of # species
 - Use "Social Cost of Carbon" to find the value of reduced damages if you increase # species
- Results:
 - Going from 1 → 2 species stores 9.1 metric tons more carbon, worth \$805/hectare
 - Value of additional species declines with diversity

More work to be done

- Valuing more services than just carbon storage. For example:
 - Butterfly "production"
 - Increased bird populations in an area, good for birdwatching and hunting
- What is "non-use value" of having restored grasslands if you can't walk in them?

Breeding bird habitat on railroad corridors

Christopher Whelan University of Illinois-Chicago

Living along the right side of the tracks: Railroad rights-of-way as wildlife habitat ^{Chris Whelan}

Department of Biological Sciences University of Illinois at Chicago

C

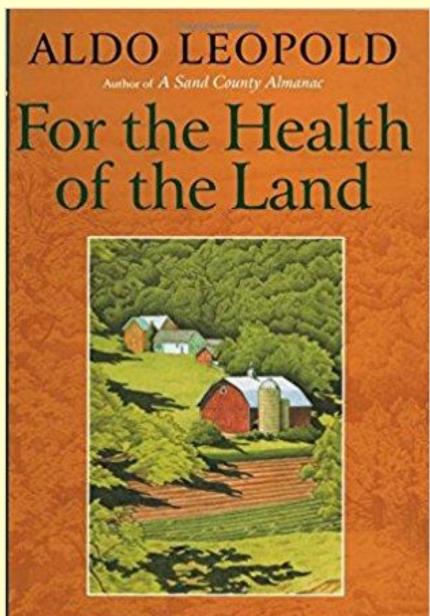
U

UNIVERSITY OF ILLINOIS AT CHICAGO

Transportation is key to our society

VOLUME I

IMPACTS OF THE ELGIN, JOLIET, AND EASTERN RAILWAY LINE ON NATURAL AREAS IN THE WESTERN CHICAGO METROPOLITAN AREA Transportation, in all its forms, has ecological impacts.


Well studied impacts are those associated with the over 4 million miles of highways in the United States.

Less known are potential impacts of 233,000 miles of railroad tracks in the U.S.

Win-Win Ecology

How the earth's species can survive in the midst of human enterprise

Previously Unpublished Essays and Other Writings Edited by J. Baird Callicott and Eric T. Freyfogle Leopold wrote about the need to push for conservation on private lands. Mike's notion of Reconciliation Ecology seems to me to be somewhat a modern restatement of that position.

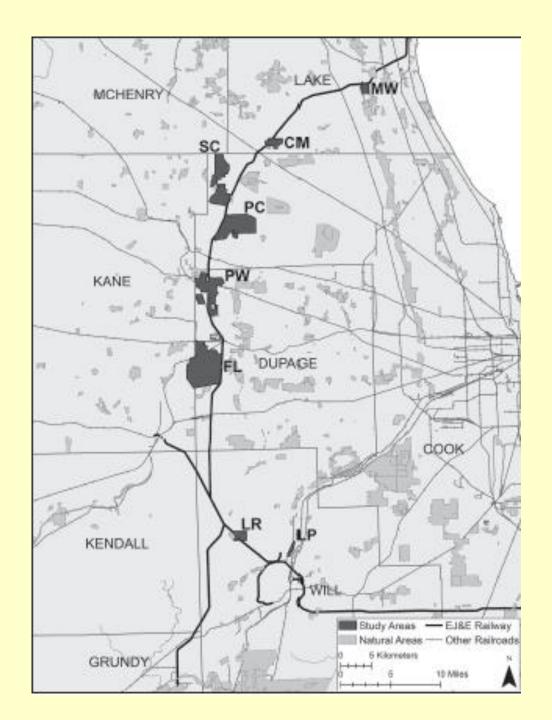
Win-Win Ecology

- Potential impacts of rail corridors on wildlife specifically breeding bird communities
- Managing transportation rights-of-way and adjacent lands to enhance habitat for native bird species

Assessing ecology of nesting birds along the Elgin Joliet & Eastern (EJ&E) Rail Corridor

Christopher J Whelan, Illinois Natural History Survey

Mason Fidino, Lincoln Park Zoo


Manette E Sandor, University of Connecticut

Dylan Maddox, Field Museum Associate

Allison K Barner, University of California-Berkeley

Hahn Bui, Real World

Rail corridors are buffered from surrounding lands by the adjacent rightof-way (ROW). Vegetation growing in and adjacent to the EJ&E ROW varies:

Grassland

Forest or woodland

Shrubs

BOX 502151

36

666

666

Marsh (cattails) or open water

Vegetation growing along the right-ofway potentially provides nesting habitat for various bird species. Our overall project assessed:

- bird species
 richness
- relative abundances
- nesting ecology
- potential nest
 predator species
- some behavioral responses to trains

In 2012, an indigo bunting placed its nest in vegetation indicated by the arrow.

EJ&E rail corridor at Pratt's Wayne Wayne Woods has various habitats adjacent to both its eastern and western rights-of-way

Grassland

Shrubby old field

Flooded Forest

()

< @>>

Google earth

3075 ft

Grassland

Wetland

14.210' W elev 760 ft

© 2012 Googl

ComEd

Imagery Date: 3/12/2012 🕖 1993

Projects and Sites

Bird species richness Relative bird abundance

All 9 sites

Natural nests

Cuba Marsh Spring Creek Poplar Creek Pratt's Wayne Woods

Potential Nest Predators:

- Dummy nests
- Camera traps

Key wetland species

Behavior of nesting herons and egrets

Behavior of nesting songbirds Cuba Marsh Spring Creek Poplar Creek

Cuba Marsh Spring Creek Pratt's Wayne Woods

Lake Renwick

Cuba Marsh, Spring Creek Poplar Creek Pratts Wayne

Bird Community Results

- Differences in species richness among sites
- Within sites, no difference in species richness close and far from tracks
- Species composition varied among sites
- Species composition varied a small amount close and far from tracks
- Variation was small from year to year

Nesting Ecology

 Population persistence depends upon stable or positive population growth rates, a function of nesting success.

•Trains might affect nesting success or failure.

<u>Negative</u> - passing trains could cause parents to leave nest unattended

<u>Positive</u> - nest predators may avoid habitat along the tracks

Natural Nests

- All natural nests found were recorded
- Over 4 years, over 400 nests of about 30 species were monitored
- Nest location varied in distance from EJ&E corridor
- Mayfield estimates of nest success

Summary

Given conditions on EJ&E from 2009-2012:

bird communities similar
 close to and far from tracks

 some nest predators may be more active near tracks

yet nest success of "track" nests equal to or greater than "away" nests

 nesting birds appear acclimated to trains on tracks

Win-Win Ecology

- Can we enhance RR ROW habitat for birds?
- Huijser and Clevenger (2006): roads and their ROW perceived as disturbance and threat
- In developed landscapes: ROW are often the only remaining natural or "semi-natural habitat"
- Braband (1986): Iowa ROW along rail corridors in largely agricultural landscape perfect example

Right-of-Way Vegetation Management

- choose species that meet needs of RR and adjacent land owner
- native grass, forb, shrub or tree species
- floral species that provide nectar for nectarivores

Rail lines near grain elevator in rural Iowa

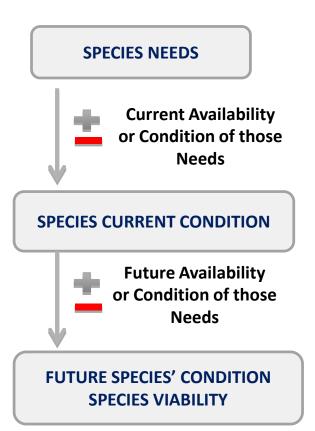
Rail line in rural Nebraska

Railroad prairies

Railroad prairie along the right-of-way of the Burlington Northern Railroad, Iowa

Claridon Railroad Prairie, Ohio. This prairie is a mile long and 50 feet white.

- consider birds as surrogates for all wildlife
- bird communities along the EJ&E RR corridor are similar to those away in similar habitat
- RR corridors may provide useful habitat for many bird and other wildlife species


Questions?

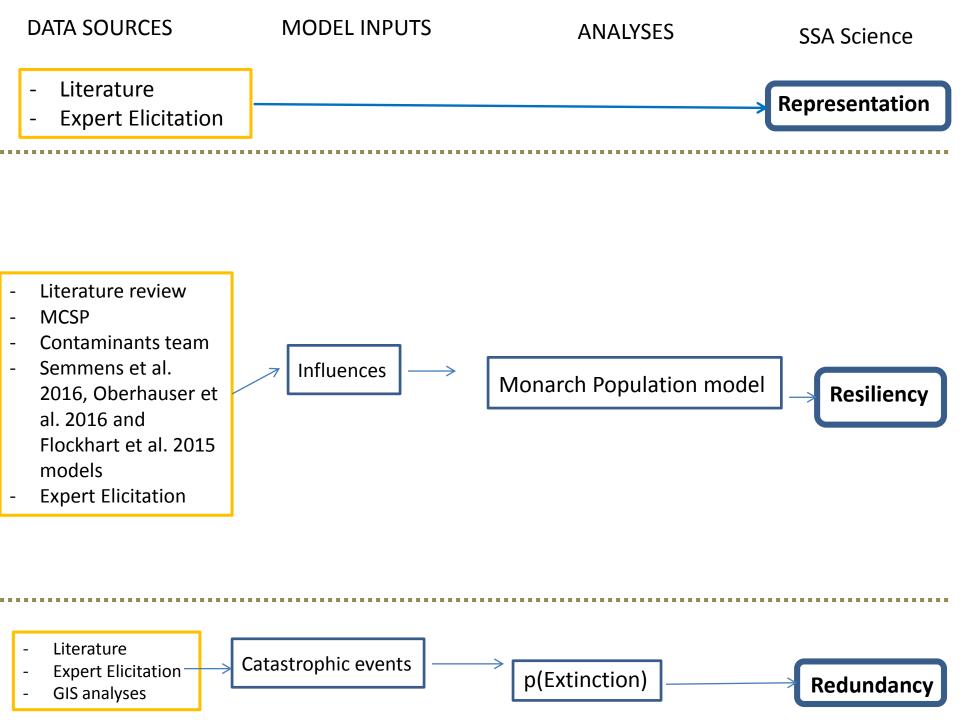
USFWS Monarch Species Status Assessment

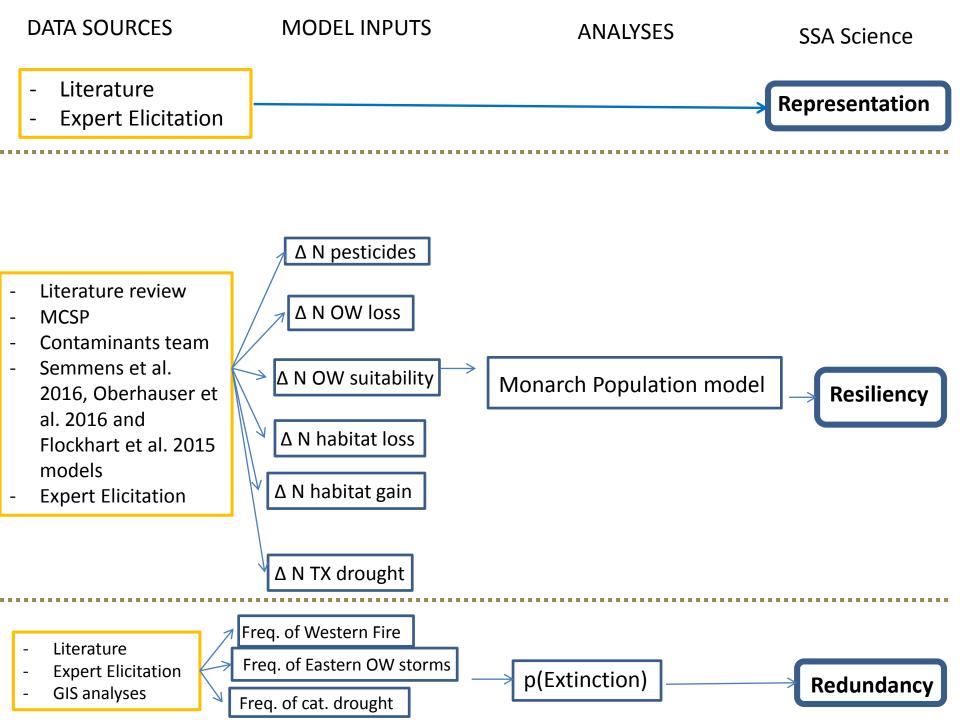
Kristen Voorhies U.S. Fish & Wildlife Service

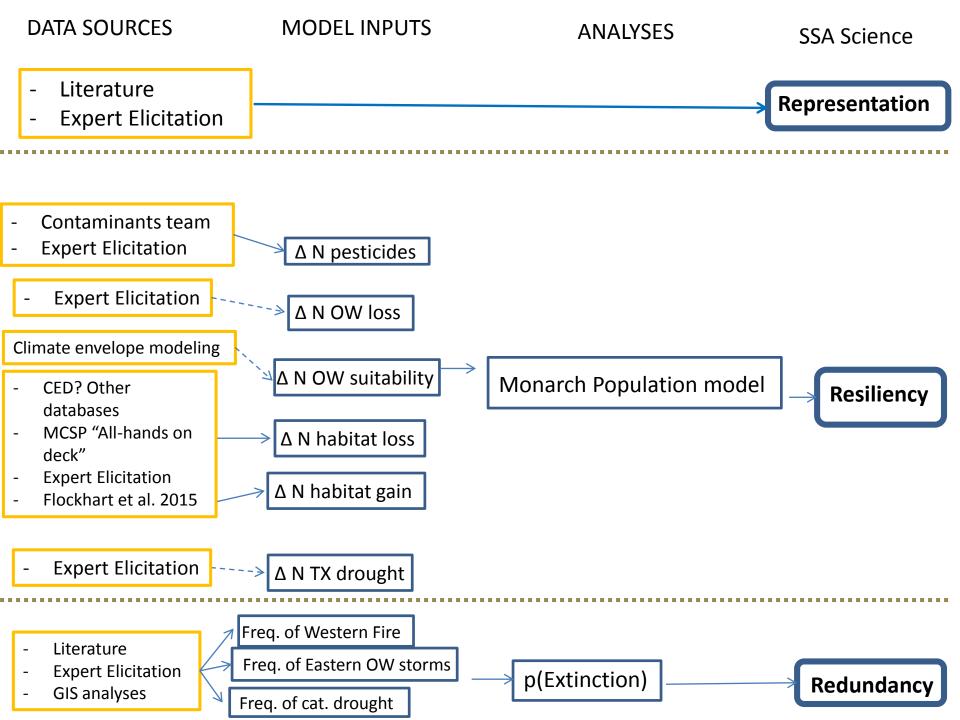
- The purpose of the SSA
 <u>Framework</u> is to describe the
 viability of species in a way that
 supports our ESA decisions.
- Viability for a species is the ability to sustain populations in the wild over time.

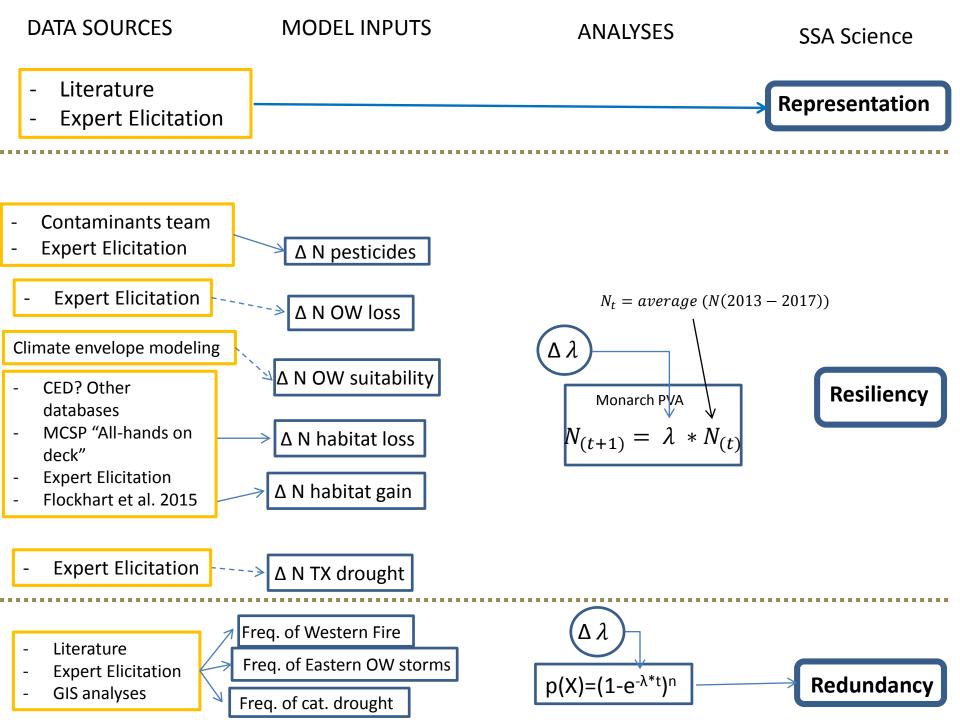
SSA Science

Representation


Resiliency




Representation


Resiliency

