

Pollinator-Friendly Herbicide Practices

October 25, 2018

Agenda

Section 1. Role of herbicides in habitat management

Section 2. Herbicides and pollinators

Section 3. Herbicide Best Management Practices (BMPs) for pollinators

Herbicides are a type of pesticide used to remove unwanted plants for:

- Vegetation control
- Habitat management
- Other (economy, aesthetics, health)

Herbicides are a type of pesticide used to remove unwanted plants for:

- Vegetation control
- Habitat management
- Other (economy, aesthetics, health)

Not all herbicides are created equal. Important distinctions for habitat management:

• Formulation Mode of action (e.g. target plants)

- Approved legal uses
- Ecologically-compatible uses

Habitat conversion: non-sensitive site

Stantec

Replace undesirable vegetation with desirable vegetation

Habitat stewardship: sensitive site

Prevent undesirable vegetation from replacing desirable vegetation

Potential <u>indirect</u> effects pollinators

A results of modification of food supply: removal / reduced vigor of flowering plants from direct spray or drift

Removal of host plants

Degraded pollinator habitat can lead to reduced use by pollinators

* Other control methods can also degrade habitat (e.g. mowing temporarily reduces floral resources)

Potential <u>direct</u> effects - pollinators

<u>May</u> result from direct exposure of pollinators to **herbicides and adjuvants** when:

- 1. A pollinator is sprayed ("line-of-fire")
- 2. A pollinator ingests chemicals during feeding. e.g., for bees:
 - Adults: plants that have been sprayed
 - Larvae: transport of contaminated nectar back to nest

Potential direct effects

Studies on the direct effects of herbicide active ingredients are limited.

Information gaps

- ✓ Not all herbicides and adjuvants have been studied
- ✓ "Inert" herbicide ingredients and adjuvants are proprietary
- \checkmark Lab tests often performed only on the active (technical) ingredient
- ✓ U.S. testing requirements are basic (acute oral dose on honey bees)
- \checkmark Test concentrations vary and exposure pathways vary
- ✓ When combined multiple active ingredients may have unique effects
- ✓ May be multiple formulations of an active ingredient
- ✓ Formulations change over time; multiple formulations for sale
- ✓ Limited pollinators studied (typically honey bees)

Difficult to make specific recommendations for / against a specific herbicide

 How, where, and when a certain chemical is probably more important

Integrated control techniques

Pollinator habitat management

Training and qualifications

- 1. Select the right herbicides and adjuvants for the job
- 2. Interpret product labels and restrictions on use
- 3. Identify target **and** non-target plants (e.g. host plants)
- 4. Familiarity with a range of application techniques to minimize off-target damage
- 5. Concepts of adaptive management ability to change approach as conditions require between sites or within a site

Planning and assessment

Awareness & adaptive management

Chemical selection

ntec

- Herbicides: preference for those that pose the least threat to the environment
 - Mode of action: select <u>selective</u> formulations
 - Fate in the environment: select those with low <u>drift</u> and <u>runoff</u> potential
 - Residual activity: select those with **low** residual activity
 - Toxic effects: select those with <u>high</u> LC₅₀ and LD₅₀
- ✓ Adjuvants: preference for naturally-derived products
 - Crop / seed oil surfactants w/ minimal "other" additives
 - Aquatic-approved (Washington State University Pesticide Information Center)
 - Toxic effects: select those with <u>high</u> LC₅₀ and LD₅₀

22

Application techniques

Low-volume foliar

Use lowest combination of **volume & concentration** to achieve the intended outcome

Select appropriate techniques based on application goals and site ecology

Concentration

Conversion

Application timing

 ✓ Generally difficult to implement on a large scale. May be implemented at the site scale.

✓ Considerations:

antec

- Environmental conditions avoid foliar applications in high wind, dew, atmospheric inversions
- 2. Time of day morning and evening are best
- 3. When beneficial floral resources are low
- 4. When pollinator activity is low

Natural systems with intact ecological processes are more resilient to change

A native plant community is less likely to be invaded by weedy / invasive plants than a disturbed plant community

Reduce reliance on herbicides over the longterm

Use integrated control techniques to improve and manage ecological function

Questions?

Aaron Feggestad Stantec Senior Ecologist <u>Aaron.Feggestad@Stantec.com</u> Marla Westerhold ComEd Senior Program Manager Vegetation Management Dept. Marla.Westerhold@ComEd.com

