Functional Landscapes & Regional Habitat Restoration:

A Case Study with AEP on Seeding Native Prairie in Utility Right-of-Ways at The Dawes Arboretum

Shana Byrd, Doug Berube & Livia Raulinaitis The Dawes Arboretum, 7770 Jacksontown Road, Newark, OH, USA

BOUNDLESS ENERGY

The Dawes Arboretum

THE DAWES ARBORETUM: COMMITTED TO CONSERVATION & RESTORATION

EUNCARON

WHY PRAIRIE?

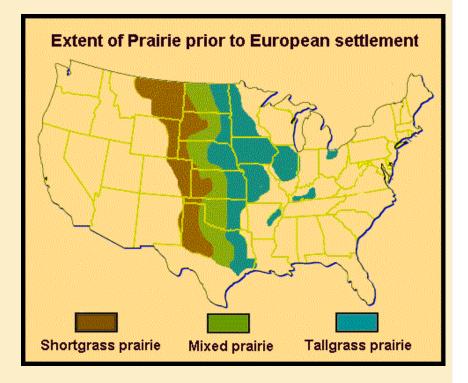
Well adapted, offers eco-services:

- greater pollination services
- growth in various soil conditions
- no fertilization needed
- drought tolerance
- deep roots, stabilizes soil

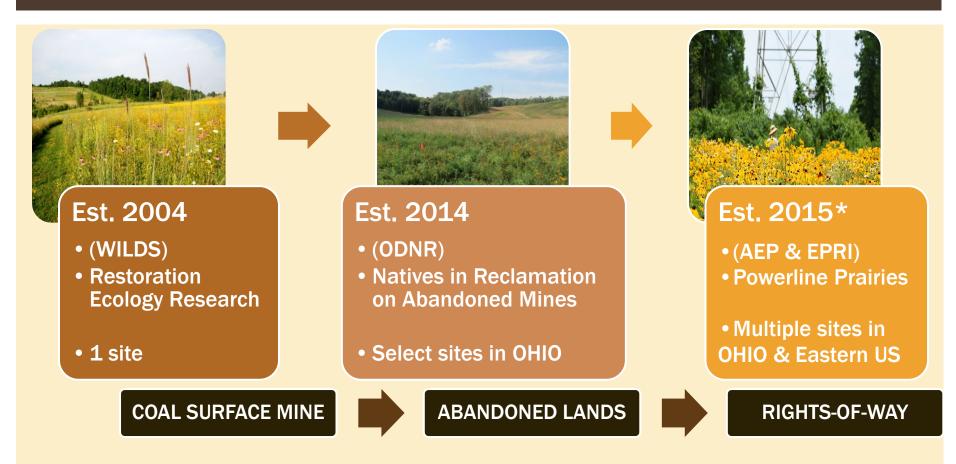
Regulatory use of native seed in progress:

- Highway right-of-ways West Virginia, USA (Skousen, et. al, 2008)¹
- Abandoned coal mine lands

Ohio, USA (Div. Mineral Resource Management, 2017)


Bureau of Land Mgt, Oil & Gas, Reclamation West of Mississippi, USA (www.osmre.gov, 2014)

REBUILDING NORTH AMERICA'S MOST ENDANGERED LARGE ECOSYSTEM



Presently: < 5 % of original 142 million acres of tallgrass prairie in United States remains (USDA/NRCS)

Disturbed lands provide an ideal opportunity to re-establish prairie in parts of former range

SEED'ING IS BELIEVING: NATIVE REVEGETATION EVOLVES OVER TIME

Experimentation across industries: led to refinement of native seeding application regionally

LAND DEGRADATION MAY LEAD TO NEW ECOLOGICAL OPPORTUNITIES

- Ex: Coal mine land reclamation to 'original ecological condition' may not be feasible (Cairns 1979, Holl 2002).
- Standard practice dictates reseeding NON-NATIVE grasses with limited ecological value
- "novel ecosystems...using native species in plantings can serve to improve ecological structure and function" (Cusser & Goodell 2014).

BARE GROUND POST-CONSTRUCTION

= Native Plant Restoration Opportunity

ODOT RIGHT OF WAY PARTNERSHIP (EST. 2015)

ODOT RIGHT OF WAY COMPANION PRAIRIE (EST. 2015)

Maturation (2015, 2016, 2017)

PILOT STUDY: POWER PRAIRIE (EST. 2015)

ECONOMY SEED MIX DESIGN GOAL:

- FLEXIBLE, Maximum Diversity, <u>HARDY NATIVE PLANTS</u>
- Minimum Cost Per Pound
 - **Cover Crop & Flowering Annual Nurse Crops**

NATIVES IN RECLAMATION: <u>HARDY NATIVE PLANTS WORK</u>

Contents lists available at ScienceDirect

Ecological Engineering

journal homepage: www.elsevier.com/locate/ecoleng

Native vegetation in reclamation: Improving habitat and ecosystem function through using prairie species in mine land reclamation

R.M. Swab^{a,*}, N. Lorenz^b, S. Byrd^c, R. Dick^b

* The Wilds, 14000 International Rd, Cumberland, OH 43732, United States
^b College of Food, Agricultural, and Environmental Sciences, School of Environment and Natural Resources, The Ohio State University, 064 Parker Food Science Building (room 070B), 2015 Fyffe Road, Columbus, OH 43210, United States
^c The Dawes Arboretum, 7770 Jacksontown Rd, Newark, OH 43056, United States

ARTICLE INFO

ABSTRACT

Article history: Received 2 December 2016 In the Appalachian region, coal mining has impacted 600,000 ha historically. While a return to forest would be a preferable postmining land use, due to the difficulty and higher costs of reforestation, many

Not all natives will suffice... Natives in seed mixes <u>must be competitive</u>. "Incorporating hardy native prairie plants ...can increase value of ecosystem... (soil, pollination) more than non-native <u>plantings</u> alone"

PUBLISHED 2016

VEGETATION: INITIAL RESULTS

What has grown? Table 1: Avg % cover of species observed in the Powerline Prairie (Established in 2015) -

(13 of 19 species seeded* (68%)

Species	Common name	% cover	Native Status
Rudbeckia hirta	black-eyed Susan	25-50%	Native
Solidago canadensis	Canada goldenrod	10-25%	Native
Senna hebecarpa	wild senna	2-5%	Native
Elymus canadensis	Canada wild rye	5-10%	Native
Ratibida pinnata	gray-headed coneflower	5-10%	Native
Aster novae-angliae	New England aster	5-10%	Native
Heliopsis helianthoides	oxeye sunflower	2-5%	Native
Monarda fistulosa	wild bergamont	2-5%	Native
Silphium perfoliatum	cup plant	10-15%	Native
Sorghastrum nutans	Indian Grass	5-15%	Native
Panicum virgatum	switchgrass	0-1%	Native
Rudbeckia triloba	sweet browneyed Susan	5-10%	Native
Chamaecrista fasciclata	partridge pea	10-20%	Native
Asclepias incarnata	swamp milkweed	2-5%	Native

NATIVE VEGETATION IN POWERLINE PRAIRIES

EST. 2017

The Dawes Arboretum Trees ~ History ~ Nature

BOUNDLESS ENERGY™

ELECTRIC POWER RESEARCH INSTITUTE

PROJECT GOALS & OUTCOMES

GOALS

- evaluate the feasibility of establishing native vegetation
- determine potential for soil erosion control and stability
- measure resistance to tree invasion
- document diversity of wildlife
 OUTCOMES
- recommendations native seeding
 vegetation management guide

PRAIRIE RESEARCH DESIGN: *Single Native Seed Mix Agriculture (Left) & Forest (Right)

POWERLINE PRAIRIES SITE PREP & PLANTING FORESTED CORRIDOR

The Dawes Arboretum Trees ~ History ~ Nature

BOUNDLESS ENERGY

ELECTRIC POWER RESEARCH INSTITUTE

Seeded by hand broadcast method, Rate 14 Bulk Lbs/ac (8 PLS)

POWERLINE PRAIRIES SITE PREP & PLANTING AG FIELD

The Dawes Arboretum Trees ~ History ~ Nature

BOUNDLESS ENERGY

ELECTRIC POWER RESEARCH INSTITUTE

Convert farmland to conservation crop? WHY?

- Increased yields from pollinator buffer strips around crop fields
- Reduce erosion in unproductive sites

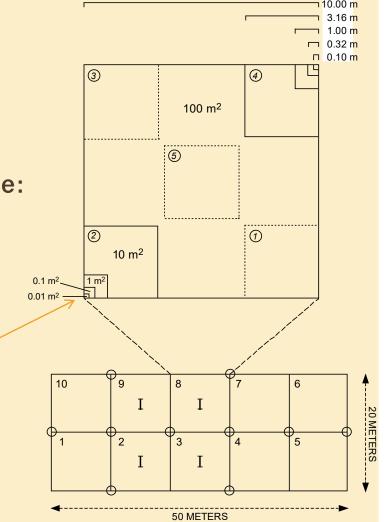
https://www.nrem.iastate.edu/research/STRIPS/content/about-strips

RESULTS: VEGETATION SURVEYS 2017 & 2018

Hard to know what is succeeding unless you look really close...

VEGETATION SURVEY METHODS

(2) techniques:


- Daubenmire method
- NCVS¹ method

(standard) (intense)

Species diversity, abundance, presence:
 Native status, Invasive status

¹(NCVS) North Carolina Vegetation Survey Method

EST. 2017 Right-of-way Native Prairie Seed Mix

Common Name	Scientific Name	Percent of Mix
	Native Power Mix	
Little Bluestem	Schizachyrium scoparium	.22
Sideoats Grama	Bouteloua curtipendula	.11
Canada Wild Rye	Elymus canadensis	.10
Virginia Wild Rye	Elymus virginicus	.05
Blackeyed Susan	Rudbeckia hirta	.075
Purple Coneflower	Echinacea purpurea	.030
Wild Senna	Cassia hebecarpa	.025
Oxeye Sunflower	Heliopsis helianthoides	.025
Illinois Bundleflower	Desmanthus illinoensis	.022
Desmodium canadense	Desmodium canadensis	.022
Prairie Clover	Dalea purpurea	.020
Sweet Browneyed Susan	Rudbeckia triloba	.020
Grey Headed Coneflower	Ratibida pinnata	.011
Tall White Beardtounge	Penstemon digitalis	.010
Lanceleaf Coreopsis	Coreopsis lanceolata	.010
New England Aster	Aster novae-angliae	.007
Prairie Blazing Star	Liatris pycnostachya	.005
Swamp Milkweed	Asclepias incarnata	.005
Showy Milkweed	Asclepias speciosa	.005
Butterfly Milkweed	Asclepias tuberosa	.005
Giant Ironweed	Vernonia gigantea	.005
Blue False Indigo	Baptisia australis	.020
Partridge Pea	Chamaecrista fasciculata	.08
Plains Coreopsis	Coreopsis tinctoria	.05
Annual Oats	Avena sativa	.08

EST. 2017 Right-of-way Native Prairie Seed Mix

Common Name	Scientific Name	Percent of Mix		
Native Power Mix				
Little Bluestem	Schizachyrium scoparium	.22		
Sideoats Grama	Bouteloua curtipendula	.11		
Canada Wild Rye	Elymus canadensis	.10		
Virginia Wild Rye	Elymus virginicus	.05		
Blackeyed Susan	Rudbeckia hirta	.075		
Purple Coneflower	Echinacea purpurea	.030		
Wild Senna	Cassia hebecarpa	.025		
Oxeye Sunflower	Heliopsis helianthoides	.025		
Illinois Bundleflower	Desmanthus illinoensis	.022		
Desmodium canadense	Desmodium canadensis	.022		
Prairie Clover	Dalea purpurea	.020		
Sweet Browneyed Susan	Rudbeckia triloba	.020		
Grey Headed Coneflower	Ratibida pinnata	.011		
Tall White Beardtounge	Penstemon digitalis	.010		
Lanceleaf Coreopsis	Coreopsis lanceolata	.010		
New England Aster	Aster novae-angliae	.007		
Prairie Blazing Star	Liatris pycnostachya	.005		
Swamp Milkweed	Asclepias incarnata	.005		
Showy Milkweed	Asclepias speciosa	.005		
Butterfly Milkweed	Asclepias tuberosa	.005		
Giant Ironweed	Vernonia gigantea	.005		
Blue False Indigo	Baptisia australis	.020		
Partridge Pea	Chamaecrista fasciculata	.08		
Plains Coreopsis	Coreopsis tinctoria	.05		
Annual Oats	Avena sativa	.08		

SPECIES PRESENT

 \geq

18 OF 25 From seed mix Within 2nd growing season 72%

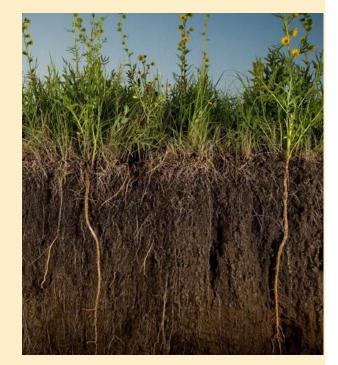
PRAIRIE PROVIDED EFFECTIVE EROSION CONTROL

70%

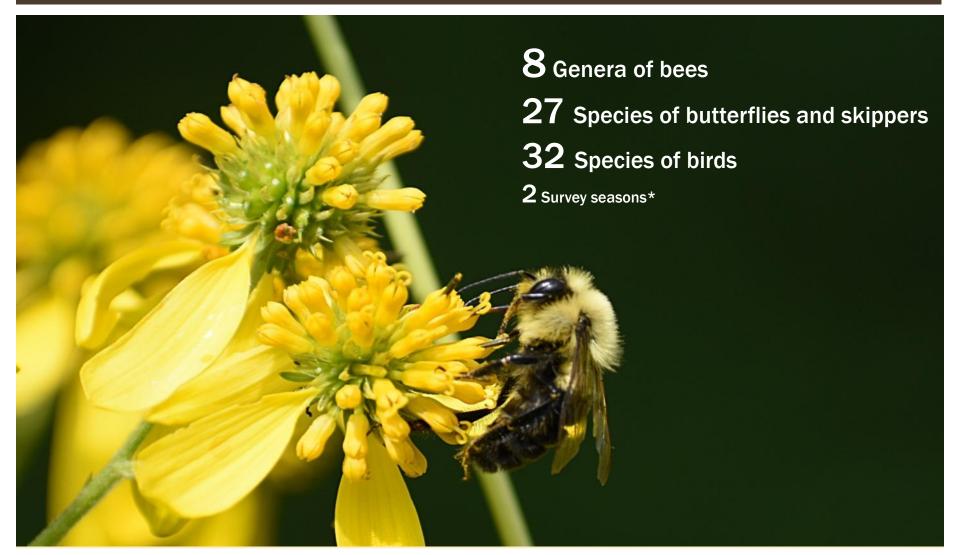
100%

REQUIRED % COVER WITHIN 1 YEAR OF SEEDING.

80% PLOTS HAD > 80% COVERAGE IN LESS THAN 4 WEEKS.


EXCLUSIVELY NATIVE MIX WAS 100% EFFECTIVE AT MEETING EROSION CONTROL AND VEGETATION STANDARDS.

CAN HEALTHY NATIVE PLANT ROOTS INHIBIT TRESS?


YR 2: need results over time

- Suggest seeding <u>diverse mix</u>, <u>sufficiently dense</u>* to limit space and resources avail. for trees & invasives
- Some species may have inhibitory effects, add to seed mixes. Include fast-growing annuals.
- No evidence prairie increases tree invasion (<u>= or +</u> seeding NN)

* Avoid seeding too dense to reduce native densitydependant mortality (14lbs/ac)

RIGHT-OF-WAYS ARE IMPORTANT HABITATS

RIGHT-OF-WAYS ARE IMPORTANT HABITATS

Right of ways can provide solutions

BUSINESS CASE FOR NATIVE SEED MIXES

ltem	Dawes Arboretum		Sample	
	Native Seeding Approach		Traditional Seeding Approach	
Seed Rate Bulk	14 lb/ac.			100-250 lb/ac. *
	(rate consistent)	~		(rate site dependent)
Seed Cost	\$27.35/lb. *	*varies	ries	\$2-4/lb. *
	\$382.90/ac. *		1103	\$200-720/ac.*
Days to 70% Establishment	42	*va	ries	~60 ¹
Finish Disk Required	Yes			Yes
Cultipacker Required	Recommended			Recommended
Fertilizer Required	Not needed	_	~	Yes
	(cost savings)			
Lime Required	Not needed		~	Yes
	(cost savings)			
Straw Mulch Required	Yes			Yes

1. Based on Turk, J., Alp, N., Dattilo, A., & Boyd, J. (2017). Cost-benefit analysis of native warm season grasses for transmission line right-of way revegetation. *Ecological Engineering*, *108*, 123-131.

POSSIBLE CHALLENGES & SOLUTIONS

CHALLENGES

Cost vary based on mixFluctuation of seed prices

- Flowering maturation (3 years)
- Sites change during est.

Mow-Management vs. No-Mow Management

SOLUTIONS

- RPF bid process, flexible mixes
- Lock in rates, stabilize price, better forecast budgets (DOTs)
- Choose bloomers (years 1-2)
- Include annual flowering cover
- Seed at appropriate rate, ratio*
- No-mow sites support natives, but offer less diversity
- * Recommendations on <u>1:1 grass to forb ratio (TPC)</u>

HERBICIDE? NO-MOW?

MOW MANAGEMENT:

MOW?

- Most beneficial & important to mow during (yr 1) *est.
- Obvious difference between mowed versus no-mow plots (yr 1)

HERBICIDE MANAGEMENT:

- Herbicide selectivity can be built into mixes (compatible forbs)
- Once est., grasses & flowers can fill in after woodies sprayed out

NO-MOW and NO HERBICIDE:

- Not recommended, but some native plants will still persist
- Reduces benefits of robust vegetation to repel tree invasion

* Additional studies recommend mowing yr 1 (at min), promotes establishment

SHORT & LONG TERM BENEFITS

REVEGETATION WITH NATIVE SEED:

stabilizes soil protects watersheds tolerates challenging lands creates regionally native habitat increases native species presence better supports ecosystem function comps to non-natives in performance & cost builds natural capital financially sustainable

NATIVE SEEDING WORKS

HEALTHIER LANDS. PRACTICAL OUTCOMES. RESOURCE CONSERVATION.

ACKNOWLEDGEMENTS

Thanks for Your Support: Electric Power Research Institute¹ American Electric Power² The Dawes Arboretum³

> John Acklen¹ Tim Lohner² Amy Toohey² Luke Messinger³ Livia Raulinaitis³ Doug Berube³ Carrie Brown³ Kris Davis³

Shana Byrd Director of Land Conservation The Dawes Arboretum, Newark, Ohio 43023 sbyrd@dawesarb.org

THE DAWES ARBORETUM POWERLINE PRAIRIE RESEARCH

The Dawes Arboretum Trees • History • Nature

