

Promoting Pollinator Habitat on ROW

Jason Belcher, Ph.D Eastern US Stewardship and Development Mgr.

Right-of-way	VM cycle (years)	Distance (miles)	Width (ft)	Year
Roadway ¹	Yearly	4,183,708	30-450 (pavement edge)	2017
Electric transmission ²	3-5	641,011 (pole)	75-700	2012
Electric distribution ³	5	5,500,000 (pole)	15-25 from pole	2010
Pipeline ¹	2	2,741,128	50-150	2016
Railroad ¹	1	125,718	50	2016

Approximately 61 million acres of ROW across every type of habitat in the U.S.

What is a weed?

"A plant that causes economic losses or ecological damage, creates health problems for humans or animals, or is undesirable where it is growing."

Weed Science Society of America Board of Directors, 2015

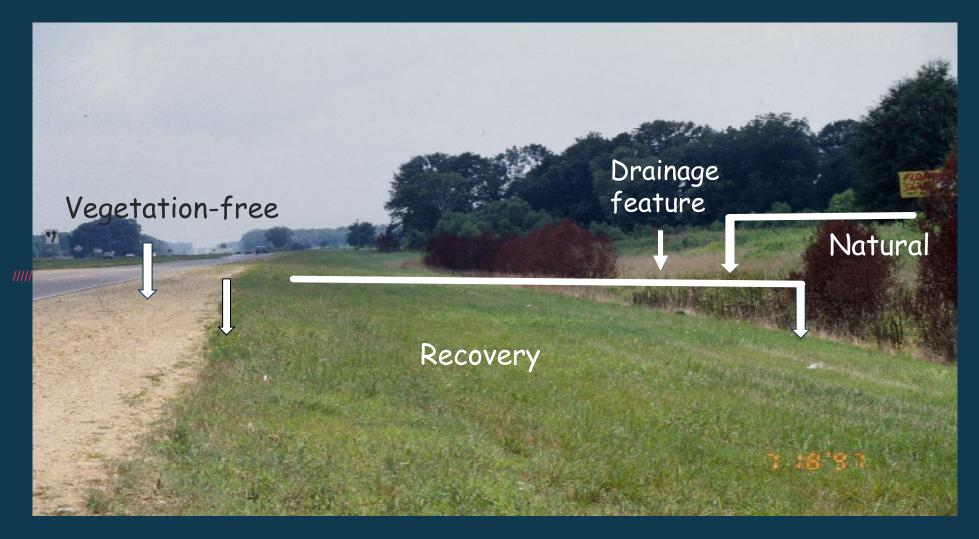
<u>Highway Right-of-Way Weed</u>

Any plant that compromises highway safety, not economical, fails to prevent erosion, not environmentally friendly, negative public relation (perception), increases liability, not aesthetic, or reduces transportation sustainability.

American Association of State Highway Transportation Officials

Other segments have similar language

Managing Vegetation on Right-of-Way



<u>Managing Vegetation on Right-of-Way</u>

- Herbicides now are much safer than in the past
- Use rates are MUCH lower than in the past

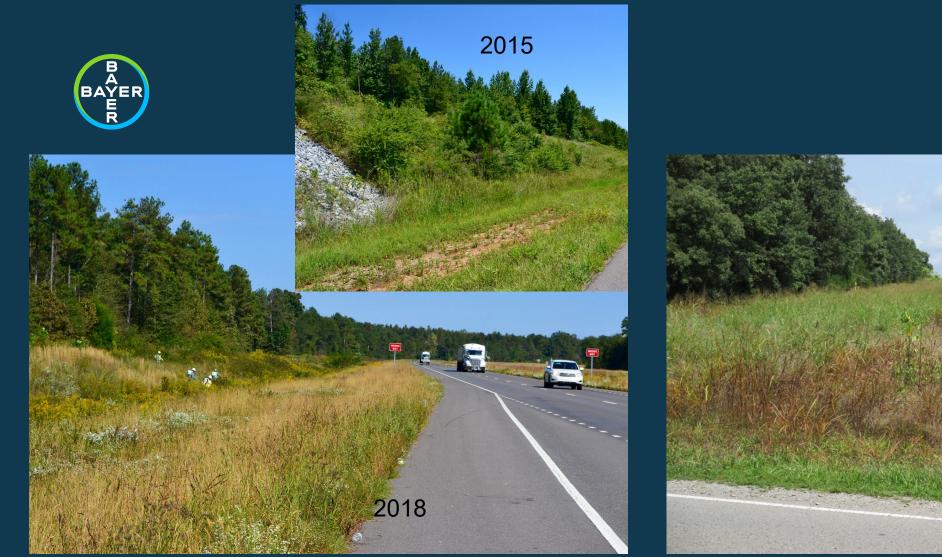
/////////

- More options for selective control of target species
- Application technique can be tailored to needs

Promotion of IPT Methodology – Target Individual Plants for Treatment

Method + Arsenal + Escort

BAYE



Promotion of IPT Methodology – Target Individual Plants for Treatment

IVM Partners Project - ALDOT

- One of the biggest obstacles: "this is how we have always done it."
- Engineers like the uniformity of mowing

////////

- Agronomists don't have much influence
- A change in how we think about IVM is needed
- Need to show COST SAVINGS

Herbicide Toxicity - Honeybees

Herbicide	Active Ingredient	Ai Acute Contact LD ₅₀ (ug/bee)*	EPA Classification
Method 240SL	Aminocyclopyrachlor	>100	Practically non-toxic
Escort	Metsulfuron	>25	Practically non-toxic
Krenite	Fosamine	>200	Practically non-toxic
Arsenal	Imazapyr	>100	Practically non-toxic
Oust	Sulfometuron	>100	Practically non-toxic

 LD_{50} Values greater than 11 ug/bee are generally considered "practically non-toxic".

Based on the contact LD50 value, the pesticide is classified as practically non-toxic (LD50 \geq 11 µg/bee), moderately toxic (10.9 > LD50 >2 µg/bee), or highly toxic (<2 µg/bee). Unless the pesticide is determined to be practically non-toxic, EPA would then typically require a study on the toxicity of residues on foliage to honey bees (OSCPP 850.3030; USEPA 2012)17.

Sources:

{U.S. EPA/OPP 2010b} U.S. EPA/OPP (U.S. Environmental Protection Agency/Office of Pesticide Programs). 2010b. Ecological Risk Assessment for the Section 3 New Chemical Registration of Aminocyclopyrachlor on Non-crop Areas and Turf. Document dated January 22, 2010. E-Docket File Name: EPA-HQ-OPP-2009-0789-0004
U.S. Environmental Protection Agency. 1986. Pesticide Fact Sheet Number 71: Metsulfuron-methyl. Office of Pesticide Programs. Washington, DC.
Registration Eligibility Decision – Imazapyr, US Environmental Protection Agency; EPA 738-R-06-007, page 18, 2006.
Registration Eligibility Decicions – Fosamine ammonium, US Environmental Protection Agency; EPA 738-F-95-005, page, January 1995.
Forest Service (USFS). 1988. *Managing Competing and Unwanted Vegetation*. Pacific Northwest Region. Final Environmental Impact Statement.
Meade A.B. 1983. Honeybee Test. G/F-1.

Thank You