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Abstract. Milkweed (Asclepias spp.) are host plants of monarch butterflies (Danaus plexippus). It is impor-
tant to detect milkweed plant locations to assess the status and trends of monarch habitat in support of
monarch conservation programs. In this paper, we describe autonomous detection of milkweed plants
using cameras mounted to vehicles. For detection, we used both aggregated channel features (ACF) for
running the detectors on embedded computing platforms with central processing unit and faster region-
based convolutional neural network (Faster R-CNN) with a ResNet architecture-based detector that is suit-
able for graphics processing unit optimized processing. The ACF-based model produced 0.89 mean aver-
age precision (mAP) on the training dataset and 0.29 mAP on the test dataset, whereas the ResNet-based
Faster R-CNN model provided 0.98 mAP on training and 0.44 mAP on the test dataset. The detections
were used to calculate approximate densities of milkweed plants in geo-referenced locations based on glo-
bal positioning system point correspondences of recorded images. Probability-of-count distributions are
compared for the actual milkweed plant locations near roadsides. This is one of the first examples of using
automated milkweed plant detection and density mapping using a vehicle-mounted camera.
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INTRODUCTION

The eastern North American population of the
monarch butterfly (Danaus plexippus) has
declined by 80% over the past two decades (Sem-
mens et al. 2016). Increasing reproductive suc-
cess in the Midwest of the United States during
the summer is identified as a high priority for
monarch conservation (Flockhart et al. 2015,
Oberhauser et al. 2017). Monarch butterflies ovi-
posit only on milkweed species (mainly Asclepias
spp.) and primarily on common milkweed
(Asclepias syriaca) in the Midwest (Malcolm et al.

1993). To increase monarch populations to a level
that would reduce the probability of quasi-ex-
tinction by 50% over 20 yr, Pleasants (2017) and
Thogmartin et al. (2017) estimated that 1.3–
1.6 billion additional milkweed stems need to be
added to the landscape in the U.S. Midwest. The
current amount of common milkweed stems in
the Midwest is estimated to be approximately
1.3 billion, the majority of which is in publicly
owned grasslands; land enrolled in conservation
programs, such as the United States Department
of Agriculture’s Conservation Reserve Program
(CRP); and road rights-of-way (ROWs), which
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are the strips of public or private property along
both sides of roads (Pleasants and Oberhauser
2013, Pleasants 2017, Thogmartin et al. 2017).
Flockhart et al. (2015) estimate that roadsides

account for 10% of the remaining milkweed in
the central U.S. region. Based on landscape-scale
modeling (Thogmartin et al. 2017, Grant et al.
2018), increasing milkweed density in rural road

Fig. 1. Camera setup attached to the vehicle.
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Fig. 2. Examples illustration showing the processes of aggregated channel features.
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ROWs will play a significant role in reaching
monarch conservation goals. Thogmartin et al.
(2017) estimate that the density of milkweed in
road ROWs in the Upper Midwest needs to
increase approximately 1.5–2-fold. Model esti-
mates assessing the impact of habitat increases in
22 land cover classes are most sensitive to
assumptions of habitat establishment rates in
marginal agricultural land and protected grass-
lands, followed by secondary road ROWs (Thog-
martin et al. 2017).

Current road ROWs are heterogeneous in com-
mon milkweed density and are typically detected
in patches of various sizes (Hartzler 2010, Blader
2018). Kasten et al. (2016) surveyed 212 five mile
long, non-urban, non-forested roadside ROWs

once per site in Minnesota, Wisconsin, South
Dakota, and Iowa from July to October 2015.
These authors detected milkweed in approxi-
mately 60% of the sites. For those sites with milk-
weed, the mean stem density (�standard error)
was 35 stems/acre (�4.8), with a range of 3.3–
2100 stems/acre. Blader (2018) sampled four 1-
mile gravel roadside ROWs in Story County,
Iowa, four times from June through August 2017.
These sites all contained milkweed. Blader (2018)
reported a mean stem density (�standard devia-
tion) of 575 stems/acre (�357). Thogmartin et al.
(2017) reported a mean of 57 stems/acre for sev-
eral roadside surveys completed prior to Blader
(2018) and Kasten et al. (2016). These authors
also proposed that 100–200 stems/acre in

Fig. 3. (a–d) Example training images used from the milkweed dataset collection.
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roadside ROWs was a biologically reasonable
upper limit stem density based, in part, on sur-
vey results used in their analyses. The variability
in reported stem densities across surveys com-
pleted to date is likely due, in part, to the large
amount of effort required to sample roadsides,
which in turn limits the means to assess stem
densities adequately across space and time. Our
proposed method provides efficient and auto-
mated sampling of roadside for milkweed plant
density. Large-scale monitoring programs for
milkweed are being designed and piloted (MJV
2017); however, the level of effort for sampling

sites needs to be reduced to support a statistically
rigorous sampling scheme.
Automated sampling of the landscape to

detect and quantify milkweed plant density
could significantly expand survey coverage by
increasing the efficiency of sampling and reduc-
ing the level of effort. To increase efficiency in
sampling, while maintaining or enhancing accu-
racy, airborne remote sensing of milkweed plants
has been proposed by Burai et al. (2011), consis-
tent with advances in using low-altitude drones
to survey for other beneficial plants (Cruzan
et al. 2016) and weed species (Barrero et al.

Fig. 4. (a–d) Example detection results of the detector trained with aggregated channel features. The numbers
show the detection score (higher is better).
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2016). Burai et al. (2011) proposed milkweed
plant mapping using airborne hyperspectral ima-
gery. They were able to classify various milk-
weed plant locations using the spectral angle
mapper (SAM) method. This classification
method measures pixels close to the measured
spectra on field according to previously deter-
mined search conditions; that is, the method clas-
sifies hyperspectral images without spectral
transformation. In a similar vein, Barrero et al.
(2016) implemented neural networks to detect
weeds in rice fields using aerial images captured
with a camera mounted on an unmanned aerial
vehicle (UAV).

While drones, or UAVs, could provide a useful
platform for roadside ROW milkweed sampling,
a vehicle-mounted camera may better comple-
ment state- or county-level departments of trans-
portation, which are beginning to implement
remote sensing technology with vehicle plat-
forms to assess the condition of 713,000 road
miles per year (U.S. Department of Transporta-
tion and HM-64 2015). In addition, UAVs require
special permissions and licenses to be operated
over public and private property, which creates
additional regulatory and logistical constraints.

Here, we report a prototype, vehicle-mounted,
remote sensing technology that provides fast

processing time and is especially suitable for
embedded systems running on central process-
ing unit (CPU)- or graphics processing unit
(GPU)-based implementation of vision methods
and algorithms. We developed an aggregated
channel features (ACF; Doll�ar et al. 2014)-based
model and a Faster R-CNN (region-based convo-
lutional neural network; He et al. 2016) model
using a ResNet backbone, which is an end-to-end
training model that selects convolution neural
networks intelligently while omitting hand-
crafted intermediary algorithms and features.
End-to-end learning does not employ hand-
crafted or intermediary algorithms; learning is
directly based on the features or patterns for a
given problem in the sampled dataset (i.e., the
detection of a milkweed plant from the other
vegetation in the roadside). The ACF-based
model is especially useful for CPU on embedded
system implementations of image processing
algorithms. The Faster R-CNN model using
ResNet backbone is more suitable to be
employed in GPUs while providing higher accu-
racy for detection. To the best of our knowledge,
this study is the first to demonstrate the potential
application of automated detection and mapping
of milkweed plants in roadside ROWs using
vehicle-mounted cameras.
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Fig. 5. ResNet50 architecture, shown with the size of the filters and outputs of each convolutional layer.
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METHODS

Milkweed dataset
Images for the training dataset were primar-

ily collected in Boone and Story counties in
central Iowa, USA, during a six-week period
from 10 July through 15 August 2017. Images
were captured in the morning (at least two
hours after sunrise) and afternoon (up to 3 h
before sunset). Weather conditions during data
collection included sunny, partly cloudy, and
cloudy days; no data was collected during
precipitation events. A total of 2746 images

were collected from areas with milkweed
plants. Collected images include variable
brightness, texture, and maturity stage of

Fig. 6. (a–d) Example detection results of the detector trained with model trained with Faster R-CNN. The
numbers show the confidence score between 0 and 1 (higher is better).

Table 1. Comparison of mAP on the training and test
datasets.

Model mAP training mAP test

ACF 0.89 0.2861
Faster R-CNNwith ResNet50 0.98 0.444

Notes: ACF, aggregated channel features; Faster R-CNN,
faster region-based convolutional neural network; mAP, mean
average precision.
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milkweed plants. The camera setup used for
collecting images is illustrated in Fig. 1. The
camera model and its lens were specifically
selected to eliminate noise from the moving
camera (i.e., Blackfly S Color 1.3 MP USB3
Vision camera; FLIR, Wilsonville, Oregon,

USA) with a Techspec HP Series 16 mm fixed
focal length lens (Edmund Optics, Barrington,
New Jersey, USA). The camera was attached
to a vehicle traveling with an average speed
from 3 to 10 m/s depending on the sampling
location and time.

Fig. 7. Milkweed plant locations around Ames, Iowa. Various regions are selected for the experiments, and
regions are marked as R11, R22, R6, R7, and R8 for image sequences collected. The red pinpoints show the milk-
weed plant locations by the side of the road. The arrows indicate the vehicle direction when recording continu-
ous images of the roadside. R6: Lat (min, max): 42.03470, 42.03477, Long (min, max): �93.7954, �93.7765; R7: Lat
(min, max): 42.10703, 42.11564, Long (min, max): �93.6593, �93.6592; R8: Lat (min, max): 42.10704, 42.12312,
Long (min, max): �93.6593, �93.6592; R11: Lat (min, max): 41.96474, 41.96492, Long (min, max): �93.6584,
�93.6392; R22: Lat (min, max): 42.96475, 42.96488, Long (min, max): �93.6583, �93.6392.
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Training milkweed plant object detectors
Model training employing aggregated channel

features.—Aggregated channel features include
feature channels of gradient, histogram of

oriented gradients, and LUV color space consist-
ing of luminance and chromaticity coordinates
(Doll�ar et al. 2014). Image gradient is a direc-
tional change in color intensity calculated with

Table 2. Environmental properties of roadside.

Site Time Weather Temperature (°C) Wind

R6 15:02–15:09 Fair/windy 32.7 SSE 35 kph
R7 16:12–16:17 Fair 32.7 SSE 32 kph
R8 15:57–16:03 Fair 32.7 SSE 32 kph
R11 13:39–13:48 Cloudy 31.1 SSE 22 kph
R22 13:50–13:57 Cloudy 31.6 SSE 22 kph

Fig. 8. (a–d) Example detections from sequential images captured from roadside R6.

 ❖ www.esajournals.org 8 January 2020 ❖ Volume 11(1) ❖ Article e02992

EMERGING TECHNOLOGIES OZCAN ET AL.



derivatives in horizontal and vertical axes. His-
togram of oriented gradients is a histogram vec-
tor definition based on oriented gradients that
was proposed initially for pedestrian detection in
images (Dalal and Triggs 2005). In this model, we
used a decision tree of depth 3. The total number
of training stages was five, and the final stage
had 4096 trees. During training, the total number
of negative samples was limited to 40K, while
the number of negative samples per image was
limited to 500. The maximum number of accu-
mulated negative samples was set to 80K. Since a
high number of negative samples were used for
better classification, the depth of the decision tree
was selected to be three for better detection per-
formance. Decision tree boosting was used over
the pixel features in order to train a model that
separates objects form background. The training
code was based on the implementation provided
by Doll�ar (2013). Individual steps, for efficiently
approximating state-of-the-art detections in
object detection among sliding-window-based
approaches, are given in Fig. 2.

While the annotated milkweed regions were
used as positive training samples, the rest of the

image was sampled to obtain the negative win-
dows. Given an input image I, we computed sev-
eral channels of various features and then
summed every block of pixels. After smoothing
the results over lower resolution channels, features
were single values in aggregated channels. Deci-
sion tree boosting was used over the pixel features
in order to separate objects from background.
ACF approximates state-of-the-art detections in
pedestrian detection among sliding-window-
based approaches (Doll�ar et al. 2014). Fig. 3 pre-
sents example images of the positive training sam-
ples of milkweed plants at different stages
throughout the sampling period. Some example
images, used for training the detectors, are dis-
played in Fig. 3. The model training took approxi-
mately 2.5 h using a computer with an Intel Xeon
3.7 GHz processor with 16 GB of memory (Intel,
Santa Clara, California, USA). Example detection
results for this model are presented in Fig. 4.
Model training using Faster R-CNN architecture

using ResNet backbone.—For the deep learning-
based model employing Faster R-CNN architec-
ture, we used the Detectron software environment
(Girshick et al. 2018). The ResNet backbone

Fig. 9. Example milkweed detection that is quite hard to detect with human eye.
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architecture (network-depth-features) had a depth
of 50 layers (He et al. 2016) for feature extraction,
as illustrated in Fig. 5. The network was initial-
ized with the weights pre-trained on the Ima-
geNet dataset (Krizhevsky et al. 2012). The
features of the original Faster R-CNN (Lin et al.
2017) with ResNet were extracted from the final
fourth stage of the convolution layer. Hyper-pa-
rameters were set following the existing imple-
mentation of Faster R-CNN with ResNet50 (He
et al. 2016). The image region was cropped from a
proposal region, and it was warped to
224 9 224 pixels in image size and fed into the

classification network. We used stochastic gradi-
ent descent with a mini-batch size of 256. The net-
work was fine-tuned on the training set using a
mini-batch size of 256 in the RoI-centric fashion.
We trained on a GPU for 60K iterations, with a
learning rate of 0.1 that was divided by 10 when
the error showed plateau behavior. We used
weight decay of 0.0001 and a momentum of 0.9. It
took approximately 2.25 h to complete the train-
ing for a single NVIDIA GTX 1080 Ti
GPU (Nvidia, Santa Clara, California, USA). The
details of the implemented Faster R-CNN model
are as follows. For testing, the region proposal

Fig. 10. (a) Missed detections, (b) false positive, (c) multiple plants detected as one, and (d) false positive.
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network generates the highest scored 1000 pro-
posals for the milkweed class. For best results, we
adopted the fully convolutional form and aver-
aged the scores at multiple scales. The images
were resized so that the shorter side was either
224, 256, 384, 480, or 640 pixels. Also, the RCNN
network was used to update the proposal scores
and box positions. The inference for each testing
image took about 0.12 s per image or about
8 frames per second (fps) on the GPU. Example
detection results for this model are presented in
Fig. 6.

Testing stage
To evaluate the milkweed plant detection per-

formance on continuous image sequences, the
intersection over union (IoU) criterion used was
similar to the Pascal Visual Object Classes (Ever-
ingham et al. 2015) challenge. This evaluation

criterion is given in Eq. 1, where Bd and Bgt rep-
resent the bounding boxes of the detected region
and the ground truth, for the objects, respec-
tively. Whenever the IoU is >0.5, we counted
these detections as true positives (TP). Similarly,
when the proposed detection Bd was not overlap-
ping with the ground truth bounding box of Bgt,
or when IoU criterion is smaller than 0.5, it was
considered as a false positive (FP). The precision
corresponds to TP over the sum of TP and FP as
provided in Eq. 2. Furthermore, the mean aver-
age precision (mAP) corresponds to mean APs of
all the objects available for detection in the object
detection literature. Since there is only milkweed
class for this project, mAP is equal to AP of the
milkweed class.

IoU ¼ areaðBd \ BgtÞ
areaðBd [ BgtÞ . (1)

Fig. 11. R6 roadside actual milkweed location and predicted density. (a) Probability of count correlation dis-
tance: 0.1059. (b) R6 roadside heatmap: Green, yellow, and red color regions show density in an increasing order
for the milkweed plant location densities.
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Average PrecisionðAPÞ ¼ True Positive
True Positiveþ False Positive

.

(2)

We compared the milkweed plant detection
performance of the two detectors on images cap-
tured from vehicle-mounted mobile cameras.
While training, mAP reached 0.89 for the ACF-
based model and 0.98 for the Faster R-CNN
model with ResNet as given in Table 1. On the
test dataset, we observed mAP of 0.29 and 0.44,
respectively, for ACF-based model and the Faster
R-CNN model with ResNet.

RESULTS

Model evaluation: Milkweed detection from
roadside images

The ACF-based model was evaluated on
images from continuous recordings of ROWs
near Ames, Iowa. The results were evaluated
based on a set of collected images and sequential
images collected from the roadside. In these

experiments, we collected a variety of ROW
images around Ames, Iowa (sites R11, R22, R6,
R7, and R8 in Fig. 7). These roadside images
were not used to train the model; that is, the
model had no prior information or bias regard-
ing the colors and shapes of milkweed plants
recorded in the ROWs. Data to evaluate the
model were collected on 15 September 2017;
environmental properties of each roadside such
as time of the day, weather, temperature, wind
direction, and speed are provided in Table 2. The
weather conditions on that particular day of the
experiment were fair, cloudy, and windy with
winds from 22 to 35 kph from the SSE. Tempera-
tures across all five ROWs were approximately
32°C. Example milkweed detections from contin-
uous image recordings are provided in Fig. 8.
The model was able to extract milkweed plants
when they were distinctly visible compared to
other types of plants even in densely populated
roadside regions. Fig. 9 provides an example to
illustrate the difficulty of detecting milkweed
visually (i.e., with the human eye). However, we

Fig. 12. R7 roadside actual milkweed location and predicted density. (a) Probability of count correlation dis-
tance: 0.1224. (b) R7 roadside heatmap: Green, yellow, and red color regions show density in an increasing order
for the milkweed plant location densities.
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also observed missed detections especially when
milkweed leaves were desiccated and small
(Fig. 10a). This is most probably due to the rea-
son that our training dataset contained limited
examples of dried milkweed plants (Fig. 10b). In
addition, multiple milkweed plants were occa-
sionally detected as one due to non-maximum
suppression when the detections are too close
and overlapping (Fig. 10c). We also observed
that in some cases, other more distant plant spe-
cies create forms that are similar to milkweed
causing the detection model to propose object
detection (Fig. 10d).

Model evaluation: Milkweed plant density
Where milkweed plants were located, we com-

pared the milkweed plant density in terms of prob-
ability of counts for actual global positioning

system (GPS) locations against estimated plant
locations based on object detection outputs. We
compared milkweed probability-of-count distribu-
tions by using Eq. 3, wherein r and s are N-dimen-
sional feature vectors. In our case, the distributions
of probability of count for milkweed have a vector
size of 20. Correlation distance is a value between 0
and 1, which is used to derive vector similarity. If
the two vectors are similar to each other, the corre-
lation distance measure approaches 1.

D ¼ 1�
PN�1

i¼0 ðri � �rÞðsi � �sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1
i¼0 ðri � �rÞ2 PN�1

i¼0 ðsi � �sÞ2
h ir ,

�r ¼ 1
N

XN�1

i¼0

ðriÞ;�s ¼ 1
N

XN�1

i¼0

ðsiÞ.

(3)

Fig. 13. R8 roadside actual milkweed location and predicted density. (a) Probability of count correlation dis-
tance: 0.2567. (b) R8 roadside heatmap: Green, yellow, and red color regions show density in an increasing order
for the milkweed plant location densities.
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Normalized probability-of-count histogram
distributions were calculated for milkweed plant
locations noted as R6, R7, R8, R11, and R22
(Fig. 7). Figs. 11–15 provide normalized proba-
bility-of-count histograms constructed with
detections from the Faster R-CNN model with
ResNet due to higher overall accuracy. The his-
tograms are compared with actual normalized
milkweed plant densities based on GPS point
correspondences. For Figs. 11, 12, 13, and 15, the
correlation distances were calculated to be
0.1059, 0.1224, 0.2567, and 0.0364, respectively.
For Fig. 14, the correlation distance was calcu-
lated to be 0.8470, implying reasonably good rep-
resentation of the milkweed distribution.

In Figs. 11–15, heatmaps of the milkweed
plant densities are also plotted based on esti-
mated milkweed densities given on the right-
hand side of the figures for each particular ROW
site. When detection-based heatmaps are com-
pared with actual count-based histograms, we
can observe the matching peak points of milk-
weed plant densities. The detection distributions

are reasonably concordant with the actual milk-
weed plant locations; however, mapping accu-
racy needs to be improved to match exact GPS
point locations.

CONCLUSIONS

The ACF-based model and the ResNet-based
Faster R-CNN model used in this study enable
automated detection of milkweed plants in ROWs
or in any other image that includes milkweed
plants. The ACF-based model produced 0.89 AP
on the training dataset and 0.29 AP on the test
dataset, whereas the Faster R-CNN-based model
provided 0.98 AP on the training dataset and 0.44
AP on the test dataset. Compared to challenging
object detection datasets such as MS COCO (Ren
et al. 2015), our developed models showed
comparable performance on our collected and
annotated datasets. On average, the original
Faster R-CNN model achieved 0.427 on the MS
COCO test dataset (Ren et al. 2015) for various
object classes. Although human annotators

Fig. 14. R11 roadside actual milkweed location and predicted density. (a) Probability of count correlation dis-
tance: 0.8470. (b) R11 roadside heatmap: Green, yellow, and red color regions show density in an increasing order
for the milkweed plant location densities.
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performed well on marking the objects, every
annotator is biased to mark bounding boxes in
one way or another affecting the overall accuracy
of trained and tested models. Faster R-CNN
requires a GPU for efficient implementation,
while the ACF-based model can run on embed-
ded platforms such as smartphones.

Our models can provide a reasonable estimate
of the milkweed plant locations. We observed a
high correlation rate, that is, 0.847, between the
R11 location milkweed plant density distribution
and milkweed plant locations based on images
captured with the moving vehicle. We also
observed a correlation score of 0.2567 for milk-
weed plant locations for R8. For other locations
such as R7 and R11, the correlation score was
quite low for probability-of-count distribution
histograms. Since our specialized cameras could
only capture image sequences with 3 fps, our
continuous image recordings were lower than
regular video frame rates, which are typically
greater than or equal to 30 fps. Our vehicle was

moving with an average speed from 3 to 10 m/s
depending on the experiment; hence, image
sequence detections could only provide discrete
sampling of roadside with an image approxi-
mately every 1–3 m traveled. A higher correla-
tion between actual milkweed counts and
discrete sampling-based detection counts could
likely be achieved with a higher sampling rate to
record continuous images. For more accurate
mapping of milkweed plant densities, future
models should be developed with higher speed
cameras to achieve more frequent sampling of
milkweed plant distribution. Another reason for
lower correlation scores at some ROW sites is
that the milkweed plant locations were not
exactly within the camera’s field of view. The
camera is able to capture plant locations that are
closer to the roadway. If the milkweed plant is
occluded with other plants/objects or it is not vis-
ible due to scattered earth surface within the
scene, it becomes harder to detect milkweed loca-
tions with a single camera. Using multiple

Fig. 15. R22 roadside actual milkweed location and predicted density. (a) Probability of count correlation dis-
tance: 0.0364. (b) R22 roadside heatmap: Green, yellow, and red color regions show density in an increasing order
for the milkweed plant location densities.
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cameras with aerial view on moving vehicles
might provide better density estimations.

Large-scale monitoring programs for milk-
weed are being designed and piloted (MJV 2017)
to assess current habitat condition and to assess
trends in habitat expansion with the implementa-
tion of monarch conservation programs. The
level of effort for national, state, and local sam-
pling programs needs to be reduced through the
use of autonomous systems to support statisti-
cally rigorous sampling schemes. Increasing
milkweed density in rural road ROWs by
approximately twofold is needed to reach mon-
arch conservation goals (Thogmartin et al. 2017).
Variability in current estimates of ROW stem
densities based on traditional surveys is likely
due, in part, to the level of effort required to sam-
ple roadsides, which in turn limits the means to
assess stem densities adequately across space
and time. Our research establishes a proof of con-
cept for an automated sampling of publicly
owned ROWs for milkweed plant density by
highway department vehicles.

Small UAV-based techniques, as explained in
Cruzan et al. (2016), could also be feasible for
monitoring milkweed if flowers, foliage, or other
plant structures are grouped and distinctly visible
from other plant species in an area. Habitat map-
ping by UAVs is possible when associated flora
and land forms have significant spectral or altitude
differences, which has good potential for quantify-
ing milkweed densities in privately owned agricul-
tural land and grasslands. Milkweed plants in
ROWs are usually scattered along the length of a
road and are not easily distinguished from sur-
rounding plants when densities are low. Based on
our prototype models, vehicle-mounted technol-
ogy can address these sampling challenges and
they could be used to efficiently estimate ROW
milkweed densities to help provide landscape-
scale milkweed density estimates within and
across the states in the Upper Midwest.
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