

Evaluating the Use of eDNA to Detect Pollinators on Rights-of-Way

Ashley Bennett, PhD, EPRI Amy Flansburg, Stantec Nate Marshall, PhD, Stantec Lew Payne, NYPA

Introduction

Background

- Utility lands managed with IVM provide biodiversity benefits to pollinators
- Utilities would like to monitor, measure, & track changes over time
- Field surveys are costly
- New rapid assessment methods are needed
- Is eDNA a possible solution?

LGE-KU Solar Site

EPRI Research Sites

AEP - ROW

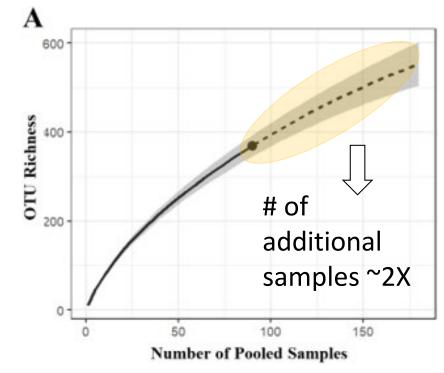

Introduction: Environmental DNA

Study Questions:

- 1. Can eDNA assess pollinator communities along ROWs?
- 2. Does flower morphology impact detection of pollinators?
- 3. How does eDNA compare to field collections?

Methods Overview:

- 1. Field collected pollinators, timed transects
 - ROW in New York State
 - Sampling method netting
 - Bees ID to species
- 2. Field collected flower heads from 7 different species
 - 6 native and 1 non-native; 4 open and 3 tubular
- 3. 10 replicates / flower species with 10 flower heads / replicate
- 4. DNA metabarcoding was used to detect pollinator species
 - Trying to detect eDNA left by pollinators visiting flowers


Results

	N. A. OTH	Number of
Order	Number of OTUs	Occurrences
Blattodea	1	1
Coleoptera	46	115
Diptera	143	386
Ephemeroptera	4	4
Hemiptera	42	1/1
Hymenoptera	42	93
Lepidoptera	36	100
Mantodea	1	1
Mecoptera	1	1
Odonata	2	3
Orthoptera	17	38
Phasmatodea	4	5
Psocoptera	8	17
Thysanoptera	2	2

- ➤ High diversity of insect taxa detected
- ➤ Most detections were for flies followed by beetles
- > Richness curves estimated more sampling was needed

Syrphid Fly

Results: Transects vs eDNA

Bees & Butterflies

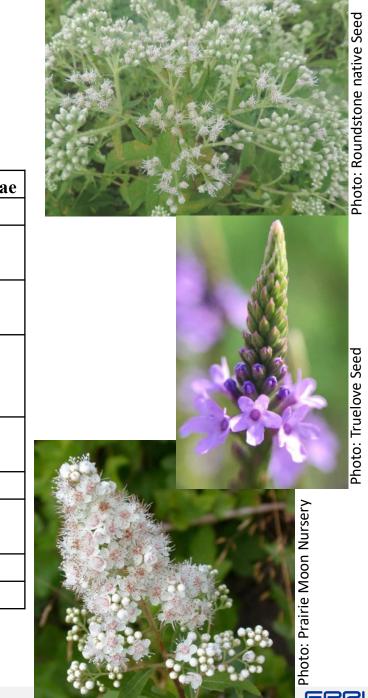
> Bees

- Higher with netting
- Apidae highest followed by Andrenid (miner) & Halictid (sweat bees)
- Very low eDNA detections

> Butterflies

- Higher with netting
- Nymphalid (brush-footed)
 Pierid (whites / sulphurs), &
 Hesperid (skippers) highest
 with netting
- No eDNA detections for top 3
- Only 1 butterfly detected with eDNA

		Count with	Occurrences	
Order	Family	Ground	with eDNA	
Hymenoptera	Andrenidae	131	1	
	Apidae	1672	24	
	Chrysididae	1	0	
	Cimbicidae	1	2	
	Colletidae	30	0	
	Crabronidae	26	0	
	Halictidae	116	15	
	Ichneumonidae	3	0	
	Megachilidae	38	3	
	Mellitidae	4	0	
	Pompilidae	2	0	
	Sphecidae	3	0	
	Tenthredinidae	1	2	
	Vespidae	8	3	
Lepidoptera	Erebidae	17	4	
	Geometridae	1	15	
	Hesperiidae	98	0	
	Lycaenidae	36	0	
	Noctuidae	1	14	
	Nymphalidae	231	0	
	Papilionidae	41	1	
© 2024 Electric	Pieridae	129	0	

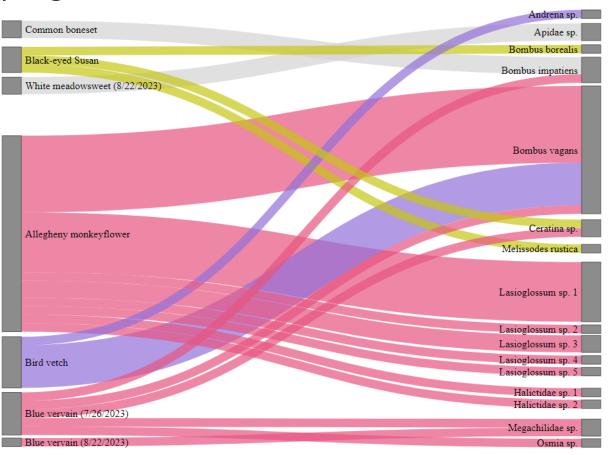

Results

Ground counts for Hymenoptera by flower species

Red = Families undetected with eDNA; **Green** = Families detected with eDNA

Flower	Andrenidae	Apidae	Cimbicidae	Halictidae	Megachilidae	Tenthredinidae	Vespidae			
	Open Flowers									
Common	,	92								
Boneset		74				-	0			
Swamp										
Candles		1		2	-	-	-			
Black-eyed	,		,							
Susan	1	1	1	!			'			
				1	2					
White	,									
Meadowsweet	10	41	1	2	2	1	1			
	Tubular Flowers									
Allegheny	,									
Monkeyflower		2		0						
Bird Vetch		21		7	2	-	<u></u>			
Blue Vervain	7	56	-	2	3	-	-			

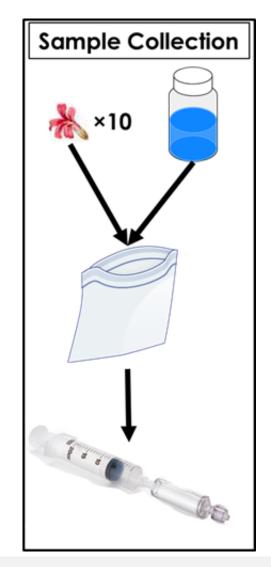
- ➤ High Apidae (bumble bee) eDNA detections
- > Bees highly attracted to blue vervain and meadowsweet

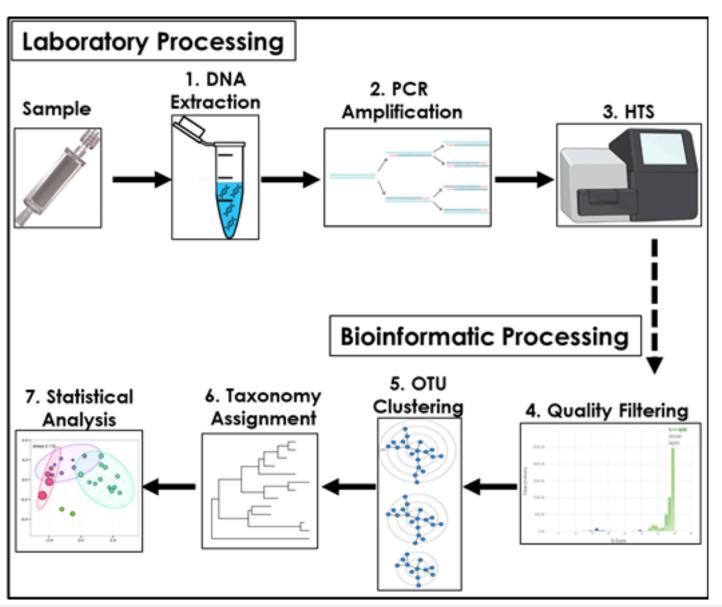


Key Findings

- 1. eDNA resulted in high detections of insect richness
 - Mostly non-pollinator groups; Hymenoptera ~10%
 - 15 of 27 insect families were detected with eDNA
- 2. Species richness curves estimated more sampling
 - 2x more to increase richness by 50%
- 3. Insect richness differed by flower
 - Black-eyed Susan highest observed richness
 - Allegheny monkeyflower highest eDNA richness
- 4. eDNA bee detections
 - 4 bee families detected
 - B. vagans most commonly detected
 - Honey bees not detected by eDNA
- 5. Flower morphology
 - 84% of bee detections were on tubular flowers
- 6. Aerial netting vs eDNA sampling
 - Overlap between methods was low
 - Halictid bees under-detected by eDNA

Next Steps


- Refine field & lab methods
- Increase bee detections
- 2024 study underway



Methods: eDNA Field & Lab

7 Flowers

